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ABSTRACT 

The attitude stability of motion of satellites in the neighbor- 

hood of equilibrium positions has been studied extensively, however, it 

is found that these studies have been limited principally to autoncnnous 

systems, i.e., systems for which the equations of motion do not exhibit 

explicit time dependence. The fact remains that a number of important 

satellite problems are defined by equations of motion containing time- 

dependent coefficients. Two such examples are: (a) the case in which 

an unsymmetric satellite moves in a circular orbit and (b) the case in 

which a symmetric satellite moves in an elliptical orbit. The resulting 

nonautonomous systems are of a special type in the sense that some of 

the coefficients appearing in the equations of motion are periodic 

functions of time. Furthermore, the periodic terms have relatively 

small amplitudes when ccmpared to the terms with constant coefficients. 

There are no general methods available for investigating the 

stability of motion of multi-degree-of-freedom systems with periodic 

coefficients such as the type encountered in problems dealing with 

rotating bodies. The only method used with any degree of success 

consists of a numerical integration of the equations of motion in 

conjunction with Floquet's theory. This method is not very satisfactory 

because, as with any numerical integration, it investigates the stability 

of the system only at discrete points in the parameter space. This 

research develops techniques enabling one to investigate stability in 
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entire regions of the parameter space. Three separate methods of analysis 

are employed, which together yield the required stability information. 

The first technique consists of an adaptation of the Liapounov second 

or "direct" method of analysis into a form that is suitable for use with 

the periodic systems. The difference between the Hamiltonian function 

and the Hsmiltonian function evaluated at an equilibrium position is 

shown to be a suitable testing function for use with the stability 

theorem. This method is used to describe one type of instability boundary 

and to show the approximate locations of the resonant instability regions. 

A second method of analysis is developed which is suitable for describ- 

ing the regions of parametric resonance of multi-degree-of-freedom, linear, 

periodic systems of the type encountered in rigid body dynamics problems. 

Because periodic motion can take place on the boundaries of the resonance 

regions an infinite determinant is written, the value of which must be 

zero on the boundaries of the instability regions. This determinant is 

then used to define the boundaries of the regions of instability. A third 

method of analysis is employed in which asymptotic methods (in the sense 

of Krilov-Bogoliubov-Mitropolsky) are applied to the multi-degree-of- 

freedom -periodic systems. This technique allows additional regions of 

instability to be defined and, in contrast with the infinite determinant 

approach, it is applicable to both linear and nonlinear systems. 

The problem of the stability of motion of a rigid spinning 

satellite which has unequal moments of intertia about axes perpendicular 

to the spin axis and whose mass center moves in a circular orbit is 

studied using the techniques described above. The boundaries of the 
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regions of instability are defined for the motion of the linearized 

system in the neighborhood of the equilibrium position in which the 

spin axis is normal to the orbit plane. Unstable regions identified as 

principal instability regions are in agreement with previous researchers. 

Cn the other hand, unstable motion is shown to exist in regions that 

were presumed to be stable by previous researchers. 

The stability of motion of a spinning, rigid symmetric satel- 

lite in an elliptic orbit has also been investigated. Consideration is 

given to the linearized as well as the nonlinear system and the equili- 

brium position in which the spin axis is normal to the orbit plane is 

investigated. The analysis of the linearized system can be directly 

compared to a previous investigation and reasonable agreement is ob- 

tained. Even for the linearized system, the present analysis is much 

more meaningful since it furnishes continuous stability diagrams rather 

than diagrams consisting of isolated points. in addition to the instabi- 

lity regions predicted by the linearized system, new instability regions 

associated with the nonlinear terms are obtained; the occurrence of non- 

linear "stiffening" of the system tending to limit the amplitude of 

resonance oscillation is noted. No previous analysis of the complete 

nonlinear system of equations is known to have been performed. 
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SECTION I 

INTRODUCTION 

1.1 Statement of the Poblem -- 

The motion of artificial esrth satellites can be described in 

many cases by the translational motion of the center of mass and the 

rotational motion of a satellite about its center of mass. The latter 

motion is referred to as the attitude motion and forms the object of 

our interest. 

Investigations of the attitude motions of space satellites are 

of current interest since random orientation or uncontrolled tumbling 

is undesirable in many cases as it w interfere with the mission 

requirements for carmnunication or observation. The satellite attitude 

may be controlled by active or passive means. Active systems require 

attitude sensors and control devices that impose weight and reliability 

penalties on the satellite. On the other hand, passive attitude control 

may be applied in some cases and is of interest because it may be 

achieved with little or no penalty to the satellite. The present study 

deals with the passive attitude control of a spinning rigid satellite. 

The attitude motion of a satellite can be defined with respect to 

an inertial system of coordinates, however, it is more convenient to 

define it with respect to an orbiting system of coordinates. In the 

case of a circular orbit, the orbiting system of coordinates consists of 



two axes in the orbit plane, one tangent and one normalto the orbit, 

and a third axis perpendicular to the orbit plane. For an elliptic 

orbit, the two axes in the orbit plane are along the radial and transverse 

directions. The configuration in which the satellite attitude motion is 

unaccelerated is called an equilibrium configuration. Of interest is 

the attitude motion in the neighborhood of an equilibrium configuration 

and in particular the stability of this motion. 

A system described by differential equations with constant 

coefficients is called autonomous. Spinning satellite problems defined 

by autonomous systems of differential equations have been investigated 

extensively. For the most part, the study has been restricted to 

sylmnetric satellites with arbitrary spin or to asymmetric satellites 

with zero spin relative to an orbiting frame of reference whereas the 

center of the satellite was confined to a circular orbit. The major 

force acting upon the satellites was due to a radially symmetric 

inverse square gravitational field. Adequate mathematical techniques 

for the treatment of autonomous systems are available, 

Systems defined by differential equations with time-dependent 

coefficients are said to be nonautonomous. The investigation of 

nonautonomous satellite dynamics problems has been very limited due to 

lack of adequate mathematical techniques. This research has been devoted 

to the develganent of mathematical techniques for the stability investi- 

gation of the motion of satellites described by nonautoncmous systems 
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of equations, and in particular systems with periodic coefficients. 

The methods of analysis have been applied to the problem of a slightly 

asymmetric satellite with arbitrary spin confined to a circular orbit 

and the problem of a spinning symmetric satellite moving in an elliptic 

orbit of low eccentricity. 

1.2 Status of Satellite Stability Research -- 

The two major methods of passive stabilization of satellites 

are gravity-gradient stabilization and spin stabilization. For a 

body in a circular orbit with zero spin relative to an orbiting freme 

of reference, the differential-gravity torque tends to align the axis 

of minimum moment of inertia with the radial direction from the center 

of force to the center of mass of the satellite. A spin-stabilized 

body tends to maintsXn the direction of the spin axis fixed in an 

inertial space if no disturbing torques are present. In this case, 

differential-gravity torques can be used to 5xrpar-t the spin axis a 

steady precession. 

Previous work cl] has shown that for rigid bodies the attitude 

motion has negligible effect upon the orbital motion of the body center 

of mass, protided the satellite dimensions are small relative to the 

distance to the center of force. This allows one to reduce the degree 

of freedom of the dynamical system by assuming that the orbital motion 

isknown. This assumption, referred to as orbital constraints, has 

been widely used in the study of the attitude motion of spinning satellites. 
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There are various factors affecting the attitude motion of a 

satellite. At moderately high altitudes the dominant torque is the 

differential-gravity torque 121. At low altitudes the aerodynsmic 

torques may became predominant. Analyses by Beletskii [31 showed 

that aerodynamic and gravity torques can disturb the motion of a spinning 

satellite to the extent that an equilibrium may not exist. Using an 

energy approach Thomson and Reiter c&l and Meirovitch [5] have shown 

that, for certain satellite configuration, internal energy dissipation 

due to hysteretic damping can destabilize the spinning motion of a 

satellite. 

Stable equilibrium configurations in the presence of gravity 

torques have been found for a number of cases involving rigid satellites 

in a circular orbit. DeBra and Delp C6l investigated the stability of 

a satellite of unequal. moments of inertia possessing zero spin relative 

to an orbiting frame of reference whereas its mass center was moving in 

a circular orbit. The attitude stability of a symmetric satellite 

with arbitrary spin confined to a circular orbit was studied by Thomson L7J. 

Both works, L61 and [71, used an infinitesimal analysis. 'Ihe stability 

of a gravity-gradient stabilized satellite was investigated by 

Beletskii [8] by means of the Liapounov direct method. Subsequently 

the stability of motion of a rigid symmetric satellite was analyzed 

by means of the same method by l?ringle [g] and Likins [lo]. 



The stability of a rigid satellite with elastically connected 

moving parts and possessing zero spin relative to an orbiting frame of 

reference was studied by Meirovitch [l] and Nelson and Meirovitch [ll]. 

The mathematical model used in Reference cl] as well as References 

[6] to CU] led to a mathematical formulation consisting of sets of 

autonomous differential equations. 

A number of factors that may have significant influence on the 

satellite stability renders the system nonautonomous by introducing 

periodic coefficients in the differential equations of motion. Included 

in this group are the following: 
. 1. Rigid, unsymmetric satellite with arbitrary spin moving in 

a circular orbit. 

ii. Rigid, symmetric satellite with arbitrary spin moving in 

an elliptic orbit. 

iii. Rigid, symmetric satellite with elasticaLly connected 

moving parts having arbitrary spin and confined to a circular 

orbit. 

iv. Rigid satellite in a circular orbit subjected to periodic 

torques due to solar pressure. 

v. Rigid satellite in a circular orbit subjected to periodic 

torques due to the nonuniformity of the earth atmosphere. 

The first problem was studied by Kane and Shippy cl21 and the 

second one by Kane and Barba 1131 using an analysis based on Floquet's 
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theory. This analysis involves numerical integration of the linearized 

equations of motion for specific values of the parameters of the problem. 

Stability is checked only at discrete points in the parameter space and 

does not furn5s.h continuous stability diagrams. 

1.3 Status of Mathematical Methods for Stability Analysis -- 

The problems of attitude motion of satelJAtes lead to systems of 

coupled, nonlinesr differential equations. For the most part, the 

general solution of these equations is not possible and we shall be 

interested in the case in which a stability statement suffices. 

Therefore, the analysis consists of determining equilibrium positions 

and examining the stability of motion of a system about these equilibrium 

positions. 

The definitions that will be used for equilibrium position and 

for stability at an equilibrium position will be as follows. Given a 

system whose essential features are described by n generalized 

coordinates and n generalized velocities, x i, (i=1,2,...,&), an 

equilibrium position is said to exist at xi = ci, (i=l,2,...,2n), 

where c i are constants if these values satisfy the differential equations 

of motion. By a suitable coordinate transformation, any equilibrium 

position of a mechanical system can be translated to the origin, 

x1 =x 2 =...= xa = 0 J and this will be assumed to be the case in 

further discussion. An equilibrium position will be defined as stable 

in the sense of Liapounov cl41 if there exist positive numbers E 

and lj and time to such that 



2n 

1 xf 5 E (1.1) 
i=l 

for all motion subsequent to an initial perturbation from the equilibrium 

position, where the initial perturbation satisfies 

2n 

I x:0 5 rl at t = to (1.2) 
i=l 

The majority of solved satellite dynamics problems deal with 

autonomous systems. Solutions were obtained by both infinitesimal and 

Liapounov analyses. Linearized analyses were used in the early studies 

of autonomous systems; fortunately, however, the Liapounov direct method 

has more recently been adopted for the stability investigation of auto- 

nomous systems. The Liapounov direct method allows one to mske conclusive 

statements as to the system stability of motion in many critical cases. 

One form of the Liapomov stability theorem states that: If there exists 

a differentiable function VL(x1,x2,...,xa ), known as a Liapounov function, 

that satisfies the conditions 

a. VL(x1,x2,...,x2n) 2 0 (1.3) 

in a definable region surrounding the origin where the equal sign 

applies only at the origin (i.e., VL is positive definite in the 

neighborhood of the origin with a relative minimum at the origin). 
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dVL b. dt= (1.4) 

where dVL/dt is taken along an integral curve then the 

equilibrium point xi = 0, (i=1,2,...,2n) is stable. The 

equilibrium is said to be asymptotically stable if ,dV,/at 

is negative def'lnite* (i.e., dVL/dt is negative in the neighbor- 

hood of the origin and equal to zero at the origin). 

The Hmiltonian function has been used extensively as a Liapouuov 

function for autonomous systems Cl], [$I], [lo], Ill]. 

Periodic systems are a special class of nonautonomous systems in 

which the time dependence appears in the form of periodic coefficients. 

The differential equations for the problems associated with an n-degree- 

of-freedom periodic system may be written in the following form 

$i = 1 bij(t)yj + Yi(yl,y2,...,y2n,t), (i=l,2,...,a) 
j=l (1.5 > 

where the coefficients bij(t) are periodic with period T and the 

functions Yi consist of second and higher order terms in the yi(s 

multiplied by periodic coefficients with period T . 

As with the autonomous systems, the equations are identically 

satisfied at the origin so that the origin constitutes au equilibrium 

* This condition is unnecessarily stringent and the above definition is 
valid if is only negative semi-definite (i.e., it can be zero 
at points than the origin) provided the motion is coupled h5][16]. 
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position in the neighborhood of which the nonlinear terms can be 

regarded as small. Hence, it is natural to in%&igate the linearized 

equations 

(1.6) 

It can be shown that every linear system with periodic coefficients is 

reducible by means of a nonsingular transformation with periodic coeffi- 

cients to a linear system with constant coefficients cl73 and that the 

stability characteristics of the system of equations are unchanged by 

such transformations. Consequently, it can be shown Cl83 that a 

characteristic equation exists for the periodic system, and that the 

linearized equations yield conclusive information about the character 

of the equilibrium only when no characteristic numbefl has a real 

part that is equal to 0. When one or more of the characteristic numbers 

has a zero real part we have a critical case in which the non- 

linear terms must be considered in order to m&e conclusive stability 

statements. Unfortunately, this appears to be the case that must 

be studied in satellite attitude stability problems. 

Theorems have been advanced using the Liapounov second or 

direct method that are applicable to nonautonomous systems and that 

* Note that the characteristic number discussed here can also be expressed 
in terms of the natural logarithm of a "characteristic multiplier" as 
discussed in the next chapter. 
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would yield conclusive stability information if they could be applied 

to the periodic systems. One such form of the Liapounov theorem for 

nonautonomous systems is the following kg]: Given a system characterized 

by the differential equations 

2 i = fi(xjft) ) (i,j=1,2 ,..., 2n) (1.7) 

which has an equilibrium position at the origin. The equilibrium is 

stable if there exists a positive definite function V(x,t) such that 

its total derivative t for the differential system, Eq's. (1.7) 

is not positive. 

To date, no application of the Liapounov method of analysis 

to periodic satellite dynamics problem is believed to have been successful. 

Some success has been achieved in the application of a method suggested 

by Cesari [x)] to the linearized equations, using nmerical integration 

of the equations of motion in conjunction with Floquet's theorem for 

specific values of the parameters of the problems. The limitations of 

this approach by Kane, et al., [12][13] have been discussed previously. 

1.4 Review of the Present Investigation -be 

Three separate methods of analysis were developed in the course 

of this investigation. Together they yield the desired stability 

information about periodic systems of the type being studied. The first 

method consists of an adaptation of the Liapounov direct method into a 
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form that is suitable for use with periodic systems. A stability 

theorem is presented, the proof of which is included in Appendix A. 

The difference between the Hsmiltonian function and the Hsmiltonian function 

evaluated at an equilibrium position is shown to be a suitable testing 

function for use with the stability theorem. The stability theorem may 

be used for defining stability.in the sense of Liapounov. However, an 

alternate use of this theorem is developed with the aid of Floquet's 

theorem, by means of which approximate locations of resonance instability 

regions may be found when the periodic influence on the system is small. 

In addition, this theorem E&LOWS certain stability boundaries to be 

located that are not readily defined by other methods,(Section II). 

The other two methods of analysis are developed for the purpose 

of describing the regions of resonance instability. One method is based 

upon approximate evaluation of an infinite determinant, while the 

second is based upon an asymptotic expansion of the equations of motion 

in terms of a small parameter. 

Although the analysis methods were developed principally for 

application to multi-degree-of-freedom systems of the type encountered 

in s-pace dynamics problems, they should also be applicable to other 

types of systems. To illustrate the analysis methods, they have been 

applied to the Mathieu equation which is a single-degree-of-freedom 

equat&on with a periodic coefficient; this analysis is included in 

Appendix B. 



Sections III and IV present the analysis of the stability of 

motion of spinning rigid satellites under the influence of periodic 

disturbances. 

In Section III the effect of asymmetry of the spinning body 

about the spin axis is studied for a circular orbit. The equations 

of motion and energy relations are derived for the system which is 

linearized about the equilibrium position. At the equilibrium posi- 

tion the spin axis of the satellite is perpendicular to the orbit plane. 

When the nonlinear terms are neglected, the spin motion becomes un- 

coupled from other satellite attitude motions and the spin rate of 

the asymmetric body is found to be an explicit time dependent, periodic 

motion. This time dependent motion appears in the linearized equations 

of motion for the spin axis as periodic coefficients. Consequently, a 

stability analysis using the methods of Section II is performed. The 

limits of stability are defined and compared with the previous linear- 

ized analysis of this case [12]. 

Section IV presents an analysis of the stability of motion of a 

rigid, symmetrical, spinning body in an elliptical orbit. Periodic 

coefficients appear in the equations of motion by virtue of the periodic 

orbital motion of the center of mass. An equilibrium position is found 

in which the spin axis is perpendicular to the orbit plane. The stability 
. 

of this nonlinear system is investigated in the neighborhood of thisequili- 

brium position, using the Liapounov - and asymptotic - types of analyses of 
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Section II. Consideration is given to the linearized system as well 

as the nonlinear system. The analysis of the linearized system can 

be directly compared with a previous investigation, Reference [133, 

which checked the stability of the linearized system at isolated points. 

The comparison shows reasonable agreement. In addition to the instabil- 

ity regions predicted by the linearized system, new instability regions 

associated with the nonlinear terms are obtained; the occurrence of 

nonlinear "stiffening" of the system tending to limit the amplitude 

of resonance oscillation is noted (see p. 1'71). Thus, the present inves- 

tQation not only Includes continuous stability diagrams which could not 

be obtained by previous methods but also extends the analysis into the 

nonlinear regime where no previous siiability investigations had been 

performed. 
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SECTION II 

METRODS OF STABILITY ANALYSIS OF PERIODIC SYSTEMS 

. 

2.1 Liapounov-Tvne Stability Analvsis 

The conclusive stability statement that can be made by means of 

the Liapounov type of analysis on autonomous systems would be of great 

value if it could be made in connection with multi-degree-of-freedom 

conservative* systems with periodic coefficients. Such an approach 

may also be useful in locating regions of instability in linearized 

systems with periodic coefficients. The periodic terms may enter the 

equations by virtue of a periodically varying potential function or by 

means of assumed periodic behavior of one, or morel coordinate that is 

not subject to the stability investigation but appears in the form of 

known time-dependent coefficients. 

We will assume an arbitrary n-degree-of-freedom system and will 

utilize the definitions of equilibrium position and stability as given 

in Section I. It should be noted that the equilibrium position may be 

defined in terms of a restricted number of coordinates (for example the 

attitude stability problem of a spinning satellite may be defined in 

*Conservative is used here in the sense that the external forces are 
derivable from a potential function that is independent of the velocities 
even though the potential function and the resulting forces may be 
time-dependent. 
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terms of the position of the spin axis as in the case of the constrained 

system of Section 1II)'and other coordinates such as the orbit parameters 

or spin angle may appear as time-dependent coefficients. 

The Hamiltonian function has been widely used as a testing function 

in conjunction with the Liapounov stability analyses of autonomous 

mechanical systems. However, it has not been used in the case of 

systems with periodic coefficients. !Po discover why this had been the 

case, let us consider an unconstrained conservative system with nonrotating 

coordinates. The usual forms of the Liapounov theorem state [lg] 

that the motion in the neighborhood of an equilibrium position will be 

stable if a function of the coordinates and time can be found which is 

positive definite in the neighborhood of the equilibrium and has a 

negative or zero time derivative. The total energy is a suitable 

Liapounov function in the case of an unconstrained conservative system 

with nonrotating coordinates problem, so the Liapounov theoren can be 

seen to require th& the total energy have a relative minimum at the 

equilibrium position and that energy is either dissipated or unchanged 

during x small motions near the equilibrium. This latter requirement 

appears to be too stringent in the case of systems with periodic 

coefficients, since intuition tells us that a stable equilibrium could 

exist such that energy could flow in and out of the system during small 

motions near the equilibrium, as long as the net energy addition after 

a period of time is not a cumulative effect. Consequently, the following 

stability theorem is suggested. 

15 



2.1.1 Stability Theorem 

Given a system described by the differential equations 

j, = 
S 

xs(s,x2, l l l ,x2nst) , (s = 1,2,...,2n) (2.1) 

for which an equilibrium position, E, exists at xl = x2 = . . . = x2n = 0, 

then the perturbed motion about this equilibrium position is said to be 

stable if a continuous function V can be found such that 

a. V(x-p2j-.,n2n, t) is positive definite in the neighborhood 

of E , zero at E , and 

t 
b. s g dt 5 M(xFo + xEo + . . . + x& 

t0 
> ) 

C (2.2) 

for motion subsequent to t = to, in which M is a finite, 

positive constant and xlC9~20,...,~2n o are initial small 
9 

displacements at t = to. 

Proof of the preceding theorem is given in Appendix A. Similar 

theorems giving the conditions for instability or asymptotic stability 

may be developed in the ssme manner. It should be noted that the 

preceding stability theorem gives conditions that are sufficient for 

concluding that a given motion is stable but does not give the necessary 

conditions. Consequently, stable motions may exist which would not 

meet the requirements of this theorem. 
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To make use of the stability theorem it is necessary to select a 

testing function which can have a relative minimum at an equilibrium 

position and for which a meaningful value of the integral, Eq. (2.2), 

can be obtained. The Hamiltonian function . 
purpose based on physical reasoning. This 

applied to a nonrotating coordinate system 

systems. 

will be investigated for this 

physical reasoning will be 

before applying it to rotating 

2.1.2 Testing Function. Nonrotating Coordinates. 

First let us introduce the rxotation: 

KE = kinetic energy 

PE = potential energy 

L =KFl - PE = Lagrangian function 

qi = generalized coordinate 

qi = generalized velocity 

'i = generalized momentum 

Qi = generalized conservative force 

By definition, the generalized momentum and generalized conservative 

are related to the Lagrangian by 

Pi = e, &EC 

a% i as. ,(i=1,2,...,n) 
1 

(2.3) 

17 



Furthermore, we have the Lagrange's equations of motion for a conservative 

system 

= ?& j 5, = Qi ,(i=1,2;...,n) (2.4) 

which states that the time rate of change of the generalized momentum 

is equal to the generalized conservative force. The definition of the 

Hamiltonian is 

H(q,p,t) = I Pi4i - JkbH,t) (2.5) 

where the first 

H. Taking the 

of Eq's. (2.3) have been used to eliminate 4, from 

time derivative of both sides of Eq. (2.5) one obtains 

dH 
dt= 

(2.6) 

which gives the following canonicti equations 

(2.7) 

18 
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One can also note that all but the last term on the right side of 

Eq. (2.6) add to zero by use of Lsgrsnge's equations of motion so 

that 

dH aH aL 
at=%=-at (2.9) 

When a nonrotating coordinate system is used to describe a 

mechanical system subjected to conservative external forces, the above 

general relations take on special forms such that the kinetic energy 

is quadratic in the velocities, the potential energy is a function of 

only the spatial coordinates, the total energy (ICE -I- PE) is equal to the 

Hamiltonian, and the gt,leralized force and mmentum are equal to the 

linear force and momentum. 

In the absence of -licit time dependence in the Hamiltonian, 

the total energy is constant. With time dependence the total energy 

changes in accordance with Eq. (2.9). 

Now we can consider the mechanisms through which an instability 

exists in the neighborhood of an equilibrium position E (the origin). 

If we consider motion near E in which the energy level is larger by an 

amount AH than the energy level at E , we see that an instability 

could exist due to exchange of energy between ICE and PJ3 in one or 

more coordinates. But for a mechanicsJ. system, KE is positive definite 

(i.e., Kl!. increases as the pi depart from zero). So, if the motion 

is not to diverge from the neighborhood of the equilibrium it is only 
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necessary that the potential energy increases as q. increase. More .1 
specifically, along any path diverging from E , such as the path 

r = alqlel - + a2q2G2 + . . . + anqnGn (2.10) 

where a19a2,...,an are arbitrary positive constants, we require that 

(2.1.1) 

Ihis essentially states that the generalized force Qi must act towards 

the equilibrium. This is equivalent to the requirement that PE 

(and H) have a relative minimum in the neighborhood of the origin. A 

key element in the above discussion is that if H is time dependent, 

it is reasonable to require that H be positive definite for all time 

and, thus, would fulfill the first stability requirement of the proposed 

theorem. 

Another possible mechanism for instability exists, even if H 

is positive definite in the neighborhood of E . It is possible that the 

energy of the system will build q over a period of time such that 

the integral of the time derivative of the difference between the 

energy of the motion and the energy at the equilibrium position increases 

without bound 
t 

I = s I & (H - HE)dt-. OJ as t -) 0) (2.12) 
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where RR is the Hmiltonian evaluated at the equilibrium position and 

it is a function which depends on t only. If this integral increases 

without bound, then unbounded values of one or more of the qi or 4, 

would be expected. Conversely, if this integral can be shown to be 

bounded in accordance with the second requirement of the stability 

theorem, the motion will. be bounded and of arbitrarily mall magnitude, 

depending upon the initial disturbance that is assumed. 

No criterion is known to exist for the selection of an optimum 

testing function for the purpose of a Liapounov type of stability 

analysis. However, the above arguments give a physical inteqretation 

of the requirements on the Hsmiltonian for a stable equilibrium to 

exist in a nonautoncmous system and shows the relationship between 

these requirements and those of the proposed stability theorem. 

Consequently, H - HR appears as a likely choice for use as a testing 

function in conjunction with the proposed theorem. 

2.1.3 TeStinQ Function. Rotating Coordinates. 

In this case the Hamiltonian can be shown to be 

H= tipi.- L = REP + u (2.13) 

where KE% is the portion of the kinetic energy eqression that is 

quadratic in the velocities and U is the dyumic potential given by 

u=E!E-y (2.14) 
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in which Y is the portion of the kinetic energy expression that does 

not depend on the velocity. The discussion of the preceding section 

is equally valid for the rotating coordinate system, except that we 

must use KEY and U instead of KE and l?JZ , respectively. It 

should be noted that the Hamiltonian is no longer equal to the total 

energy of the system and the generalized force and momentum are not, 

in general, equal to the linear force and momentum. Once again the 

function V = H - % appears to be a reasonable testing function for 

use with the proposed stability theorem. 

2.1.4 Ap-olication of the Stability Theorem. -- 

In many cases, the parameters of the problem can be specified so 

as to satisfy the first condition of the stability theorem, namely that 

the testing function V be positive definite in the neighborhood of the 

equilibrium position, at all times. This may be done in a direct way 

by proving that the Hessian matrix associated with V is positive definite 

for all times .lX.., or alternately, b,y means of comparison testing 

function C213. The latter consists of assuming that it is possible to 

find a positive definite function W(X~,X~,...,X~~) which does not 

depend -licitly on t and such that 

(2.15) 
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When the time dependence of V is periodic one may regard the 

function V = c as representing a pulsating 2n-dimensionaJ. surface). 

When V is positive definite in the neighborhood of E , the function 

V = c beccxnes a.2n-dimensional closed surface which changes in shape 

and size as a function of time. 

In order to check the second stability requirement we must obtain 

information about the integral 

t t 

I = s 
t0 

g dt = s 
t0 

g dt (2.16) 

In general, V will have the form of a series of terms consisting of a 

periodic function multiplied by second, or higher, power functions of 

the generalized coordinates qi and generalized velocities 4, . 

Consequently, we must at least know the form of the solution, qi and 

4-i 9 in order to determine the behavior of the integral, Eq. (2.16). 

For some types of problems it is possible to state that the 

solution is of the form 

9i = I fii) (t) e 
iYjt 

(2.17) 

3 

where f y)(t) sre nonperiodic functions of time (or constants) and 

'3 
are real numbers.* Equation (2.16) can then be re-expressed in the 

form of terms such as 

*The i appearing in the exponential is F , not an index. 
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t 

s t0 gA(t) e 
ioAt 

cos cut dt (2.18) 

where w is the frequency of one of the periodic terms in the Hamiltonian. 

In the case of undamped systems in which the periodic terms in the 

Hsmiltonian are small (which is certainly the case in many satellite 

dynsmics problems) the gR(t) will be constant or slowly varying 

functions of time and the integral (2.18) will behave like the pro- 

duct of trigonometric functions and will diverge only if one of the 

oA becomes equal to one of the frequencies in the periodic forcing 

function. This will be investigated further in the case of each example. 

We will call this a resonance oscillation. 

Estimation of the frequencies of oscillation of the system till 

depend on the particular system under consideration. In some cases 

it could be accomplished by means of Floquet's theorem or an asymptotic 

exp3m.ion in terms of a mall parameter. 

The conclusions which sze appropriate for the types of perturbed 

motion that are under study can be stated as a corollary to the stability 

theorem: 

Corollary - An undamped system subjected to conservative forces and 

characterized by differential equations and a Hamiltonian function 

with periodic coefficients will admit stable motion in the neighborhood 

of an equilibrium position if 

a. the Hamiltonian function has a relative minimum at the 

equilibrium position and 
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b. no resonance occurs between the motion in the neighborhood 

of the equilibrium and the periodic coefficients in the 

Hsmiltonian. 

In some cases, such as the examples treated here, it may be desirable 

to amly the stability theorem to a linearized system, in which case 

the statement concerning the stability of motion should be regarded 

as pertinent to the small motion only. Hence, in this case, stability 

will occur in the indicated regions of the parameter space only if the 

linear terms dominate the motion. 

2.2 Analysis Based on an Infinite Determinant --- 

A method similar to that employed by Bolotin [221 has been 

adapted for use in defining the regions of resonance of a linear system. 

The present study represents a substantial advance in the use of this 

type of analysis, including its application to a system of second order 

equations which contain the velocity terms that are typical of gyroscopic 

motions. This method has been applied to the problem of the spinning, 

unsymmetrical body. 

2.2.1 Discussion of the Motion of Linear Periodic Systems. -----a 

According to Floquet's theorem, a system of n second order 

linear differential equations with periodic coefficients possess C?n 

linearly independent solutions* of the form 

Jc Discrete cheracteristic multipliers sre assumed. 
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{x(j)} = {f(j)} Yaa, 'j,(j=1,2,...,2n) (2.19) 

where the fp) are periodic functions with period T and the P. 
J 

are called the characteristic multipliers. Note that 

&P=-klP( +iargP G=a 

The motion about the identically zero solution will be stable 

if no characteristic multiplier has an absolute value that is greater 

than one. The motion will be asymptotically stable if all character- 

istic multipliers have absolute values that are less than one and will 

be unstable if any characteristic multiplier has an absolute value 

that is greater than one. 

The system under consideration is linear with periodic 

coefficients and has a Hsmiltotian function from which the equations 

of motion may be written in canonical form, i.e. 

,(i=1,2,...,n) 

A theorem due to Liapounov k21] states that for such a case the 

chmacteristic multipliers occur in reciprocal pairs. Consequently, 

if P J 
is a characteristic multiplier, then l/Pj is also a characteris- 

tic multiplier. Also the characteristic multipliers for the system 

under consideration occur in complex conjugate pairs.* 

* 
This has yet to be shown for the system under study. 
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A pair of particular solutions corresponding to reciprocal 

roots may be written 

ix(k)] = if(k)j $t/T)h 'j 
( 2.22) 

The region of parameter space in which Pj is real and different from 

5 1 is clearly the region of unstable motion, since one of the reciprocal 

characteristic multipliers must be greater than one. Upon further 

variation of the parameters of the problem, the roots will became complex 

conjugate pairs 

P. =a+ib, -1 

J 
Pk= Pj =a-ib (2.23) 

and since P.P 
Jk 

= 1 they will have an absolute value equal to one0 

This then indicates that the region of complex 
pJ 

is the region of 

bounded motion. Since the characteristic multipliers are continuous 

functions of the parameters of the problem, the boundaries of the 

regions of stability will be given by the cases when pairs of roots, 

P = 1 or P = - 1, occur. Eut we can use Floquet's theorem to show 

that 

{x( j)(t+T)} = {f( j)(t+T)} e ' (t+T'p' An '3 = p j {x(j)(t)) 

= Pj {f(j)(t)}e(t/T)Yn 'j (2.24) 
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which, on the boundaries of the regions of instability, gives us 

p 1,x 3= ( j)(t+T) = ,(j)(t) 

P j=-l J &)(t+T) 3 ,(j)(t) 

The first of Eq's. (2.25) tells us that a motion which is periodic 

with period T will be admitted on a boundary where P = I . The second 

of Eq's. (2.25) indicates that a motion that is periodic with period 

2T will be admitted on a boundary where P = - 1. In addition, any 

distinct instability region (region of real characteristic multipliers) 

must be bounded by a single value of P (i.e., P = 1 or p = - 1). 

This is seen to be true because, in order for the values p = 1 and 

P = - 1 to occur on different boundaries of a given instability region, 

it would be necessary that P. = 0 and l/P 
3 

= ~0 at some location 
J 

within the instability region, since P is a continuous function of the 

parameters of the system. But this is not possible. This leads to the 

formulation of a stability theorem. 

2.2.2 Stability Theorem for Linear Systems. -- 

Theorem 

Periodic solutions with period T or 2T are admitted 

on the boundaries between regions of stability and regions of 

instability in canonical systems which are described by systems 
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of linear differential equations with periodic coefficients. 

Solutions of the same period bound each distinct region of 

instability. 

2.2.3 General Application of the Stability Theorem. -- 

Application of the preceding stability theorem consists of 

investigations to define the locations in parameter space along which 

solutions with period T or 2T can exist. Separate Fourier expansions 

with period T and 2T may be made such that for period T we have 

ix] = l {anI ei at/T = 1 [b,] sin 2nEt/T 
xl=& n=l 

cos 3mt/T 
Il=O 

and for period 2T we can write 

{x] = f {a,] ei nrrt/T = f {b,] sin nti/T 
I-e-co n=l 

{c,] cos nsrt/T 
Il=O 

(2.N 

(2.27) 
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Either the exponential or trigonometric form of one of the above 

solutions may be substituted into the differential equations and the 

resulting coefficients of equal harmonics may be equated, giving an 

infinite system of linear equations in terms of an infinite number of 

coefficients. For a nontrivial solution to exist, the determinant of 

the coefficients must be zero. Evaluation of the infinite determinant 

has been possible in the case of Hill's equation [23], and this process 

has been used further by Mettler 1241. In both cases, the equations 

being studied are of the second order, and do not include velocity terms. 

The same techniques do not appear applicable to systems with gyroscopic 

terms. 

In some cases, a reasonable approximation may be achieved by 

taking only the first few terms of the periodic expansion, Eq. (2.26) or 

Eq. (2.27). This approach will be taken in the following problem solu- 

tions. 

2.3 Analysis Based on Asymptotic Ekpansion in Terms of a Small ----- 

Parameter 

A method of analysis which is similar to that originated by 

Kryloff and Bogoliuboff [251 and further developed by Bogoliuboff and 

Mitropolski [26l has been employed. In contrast with these authors, 

however, the method used in this case involves an expansion of the 
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equations of motion using assumed simultaneous resonance and nonresonance 

solutions. As a result, one can define unstable regions of motion of a 

multi-degree-of-freedom system including those regions in which resonance 

occurs between periodic terms and the sum or difference of natural 

frequencies. Systems involving gyroscopic terms have not been discussed 

in References [251 or WI and no previous application of this type 

of asymptotic expansion in the treatment of satellite dynamics stability 

problems is known. 

Perturbation solutions in general involve assumption of the 

form of the solution of a perturbed system of equations as a power 

series in a small parameter which appears in the equation of motion. 

Substitution of this assumed solution into the equation of motion then 

allows recursive solution for the coefficient of each power of the small 

parameter, so that the equations of motion are satisfied to any desired 

accuracy (i.e. any desired power of the small parameter). The absence 

of secular terms which diverge as t + a~ and the ability to evaluate the 

coefficients is frequently accepted as evidence that the assumed form 

of solution is satisfactory. 

2.3.1 Methods of Kryloff, Bogoliuboff, and Mitropolski 

The methods employed by Ki-yloff, Ebgoliuboff, and Mitropolski 

(KBI) are most frequently applied to a single-degree-of-freedom system 
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with equation of motion of the form 

2 
f+wx= c f(x,G,t) (2.28) 

in which G is a small parameter and f(x,G,t) is an arbitrary periodic 

function of time and may be either linear or nonlinear in x and G. In 

the limit, as E approaches zero, the motion is periodic and of the form 

x = a cos (wt + 6) (2 -29 1 

where a, w, and 6 are constants. We may look upon the left side of 

Eq. (2.28) as the unperturbed equation and the terms on the right will 

be regarded as a perturbation. The assumption is then made that, for 

small a, the amplitude and phase angle are no longer constant but 

functions of E and time may be expressed as 

da 2 3 dt = c al + E a2 + e a3 + --a 

(2-30) 

d6 
dt= c 6 + c2a,+ 3 

1 s6 
3 

+ . . . 

and that the solution contains additional terms of frequency different 

from that of Eq. (2.29) so as to satisfy the differential equation. The 
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resulting assumed solution is 

x = a cos (ti + 6) + uls + u2e2 + . . . (2.31) 

The assumed solution is substituted into the equations of motion, the 

coefficient of every power of E is set equal to zero, and the resulting 

equations are solved in succession by harmonic balance. @f this process 

the differential equation is satisfied to any desired power of s. 

The KBl procedure has also been applied satisfactorily to multi- 

degree-of-freedom systems of the form 

f + i c 'ijXj = f$G,Xl, 21, X2' g2, '0. , Xn' sn, t) , 
j=l 

(2.32) 
(i = 1, 2, . . . n) 

where the c 
iJ 

are constants and the fi can be expressed as power series 

in c in which the time dependence appears as periodic coefficients. 

However, the assumed forms of solution in this case are not satisfactory 

for the type of problem under study in the present research. 

Extensive use has been made of the asymptotic methods in the 

study of oscillations since the initial work by Kryloff and Bogoliuboff 

in 1937 [253. However, no mathematical foundation was presented for 

these methods until 1955, when Eogoliuboff and Mitropolski C26l showed 

that the difference between the true solution and the solution obtained by 
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asymptotic methods could be made arbitrarily small for systems of 

nonlinear equations under rather general conditions, and that the 

properties of the exact solution are given by the properties of the 

asymptotic solution under much less general conditions. 

The type of problems currently under study are not among those 

for which the mathematical foundations have been shown by Eogoliuboff 

and Mitropolski. Furthermore, the present research does not seek to 

provide these mathematical justifications. Instead, the present effort 

has been concentrated on finding forms of asymptotic solutions which 

are capable of satisfying the differential equations of the specific 

problems being studied to any given accuracy in terms of a small 

parameter. 

2.3.2 Application to Rigid Body Dynamics 

Some problems of rigid body dynamics may be expressed in the 

form 

i1 + Elli2 + B,0, = c sn fh (01, 02’ 61, e,, t) 
n=l 

(2-33) 
w 

. . 
e2 + p3e1 + B49, = 1 

n 
s f2n (e,, e2' 619 e,, t> 

n=l 
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where in the limit, as s approaches zero, the solution becomes of 

the form 

e1 = a cos (cult + 61) + b cos (w2t + 62) 

(2-34) 

Q2 = aA sin (wit + 61) + bX2 sin (u12t + 62) 

in which CUE and w2 are the natural frequencies of the unperturbed 

system, a and b are arbitrary amplitudes, 61 and 62 are arbitrary 

phase angles, and ?I 1 and h2 are constants that are obtained in the 

process of solving the unperturbed equations of motion. We may assume 

in general that the functions appearing on the right side of Eq's. 

(2.33) can be expressed in terms of products of periodic functions 

of period T, and powers of the coordinates and velocitLes, 8 1' e2J . 
61, and 8 2' 

Application of the IQ&l type of asymptotic solution will depend 

upon the particular problem being studied and will be applied in 

different manners to the same problem in order to describe different 

oscillatory phenomena. Specifically, one can distinguish two signifi 

cantly different types of motion in each case: resonant and non- 

resonant. Resonant motion will be shown to take place when C!J~ or w2 

is sufficiently close to a frequency occuring on the right side 
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of Eq’s @=33) - 

%I investigate nonresonance motion we may inspect solutions 

of the form 

e1 = al cm ($,t + 61) + a2 cos ($,t + 8) + c uU + s2 u12 + . . . 

(2.35 > 

e2 = alAl sin (bit + bl) + a2X2 sin (@,t + 62) + c u 2 
21 

+ E u22 + . . . 

in which 'y 12, 5, and g2 may be expressed as power series in s, 

the ampJitudes a1 end a2 are functions of time such as is given by 

the first of Eq's (2.3O), and the frequencies are given by 

(b, = w1 + s A ll + e2 A I2 + . . . 

(2.36) 

or, = w2 + e A 
21+ e 

2 A22 + . . . 

Substitution into the differential equations, Eq's (2.33) and 

solution for the coefficients shows that al, a2, 61, and 62 are 

arbitrary constants, in the nonresonant case,and are independent of c_. 

The values if hl, 12, til, and $2 are also constants, but are expressed 

in terms of power series in s. Thus it is seen that in the nonresonant 

case, the perturbations cause a shift in the frequency of oscillation 
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and in the relative smplitudes of 81 and Q2 oscillations, and 

introduce additional terms given by ull, Us, u21, . . . which 

include constant amplitude oscillations of frequency 

J3wltmw2+~ (2.37) 

where 1, m, and n are integers. Consequently the nonresonance 

oscillations are bounded, multifrequency oscillations and are of 

arbitrarily small amplitude depending upon the assumed initial 

amplitudes given by al and a2. Therefore, the region of nonresonant 

oscillation is a region of stable motion. 

Resonant oscillation can occur when one of the natural fre- 

quencies (for example w,) is sufficiently close to a frequency given 

by Eq. (2.36). Defining the resonant frequency as wres, a solution 

of the following form is possible 

Ql = a cos (wrest + "1) + b cos (w2t + 8) + ulle + I+F~ + . . . 

(2 038) 

e2 = ah1 sin (Wres t + 6$ + bh2 cos (w2t + 62) + u21c 

2 + u22" + . . . 

Substitution into the differential equations of motion can be made 
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treating the amplitude "a" as a function of time and writing 

W 
res 

= wl + Al s + A2 e2 . . . 

The result is that the nonresonant part of the oscillation yields 

the same type of stable oscillatory terms as before. The resonant 

part of the solution in general has a time dependent amplitude, a, 

and may be unstable. 

Cur interest is in describing the size of the unstable resonance 

region. Consequently we wish to determine the range of the parameters 

A1' 4, . . . of Eq. (2.39) for which the amplitude, a, exists and is 

time dependent. But in the previous section we found that the bound- 

aries of this resonance region admitted constant amplitude oscillatory 

motion in the case of linear systems. This must also be the case 

for nonlinear systems, if the solution is to be an analytic function of 

time and the parameters of the problem and the solution is not unstable 

everywhere. Consequently in these cases we may locate the boundaries 

of the instability regions as those values of Al, A,, etc., for which 

the equations of motion are satisfied when a is assumed to be a con- 

stant. This is the approach assumed in the subsequent problem solutions. 

Apparent advantsges of the asymptotic method include its 

applicability to nonlinear systems and its ability to define stability 

boundaries where the sum or difference of the natural frequencies 

is in resonance with a parametric excitation. 
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SECTION III 

SPINNING,~~WCAL SA~IJ;ITE INA 

ClRC!LlLARORBIT 

The present research is concerned with the problem of stability 

of motion of a spinning, unsymmetrical, rigid satellite in a circular 

orbit. When the satellite possesses rotational motion relative to an 

orbiting frame of reference the problem formulation involves periodic 

coefficients. 

Previous work [l~,[lil has shown that for rigid bodies there is 

no coupling between the orbital motion of the center of mass of the body 

and the attitude motion of the body about the center of mass. This 

assumption, referred to as orbital constraints, will be used in the present 

study. 

Particular emphasis will be placed upon the case in which the 

body is nearly, but not exactly, symmetrical with respect to the spin 

axis. It is felt that this is a case of great interest since, for 

spin-stabilized satellites, a practical satellite system would be made 

nearly symmetrical with respect to the spin axis to minimize the periodic 

excitations caused by gravitational torques. 

3.1 Coordinate Systems 

An orbital frame of reference with its origin at the satellite 

center of mass and its orientation as shown in Figure 3.l.a is chosen. 
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OF MASS b 

FIG. 3.la 
THE SATELLITE AND THE ORBIYIXLAXES 

FIG. 3:lb 
COOFfDlNATESYSTENSANDANGULAFtvELOCIT~ 
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Axis a is &Long a radi&l line from the center of force (center of the 

es&h) to the center of the satellite, axis b slang the orbit path, 

and axis c perpendicular to axes a and b. The orbit angular 

velocity, denoted by Lb , is related to the constant K , which is the 

product of the universal gravitation&L constant times the earth's mass, 

and the orbit radius R c by fig = K/R: . Hence a, b, c forms an 

orbiting frame of reference. The orientation of the satellite relative 

to the a, b, c reference system is obtained by three successive rotations 

@p 01, and 0 as shown in Figure j-lb. 

The z axis is taken as the spin axis and the mass moments of 

inertia about the axes x, y and z sre denoted by A, B and C, respectively. 

The direction cosines between the x, y, z axes and the a, b, c 

axes may be written in terms of the following matrix equation: 

X 

11 Y = 

z 

'xa 'xb 'xc 
R a R 
w ;yb 1 YC 

R R Q 
. za zb zc 

I 
ce2c0 - se1se2s0 

= -ce2s0 - se1se2c0 

se2ce1 

a 

11 

b 

C 

celsO -se2c0 - ce2sels0’ 

celcO se2s0 - ce2selc0 

‘33 1 ce2ce1 . 

(3-l) 
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where co2 = cos O2 , se1 = sin el , etc. The angular velocities about 

the x, yI and z axes may be written 

Rx = no (-se2c0 - ce2sels0) + i2cels0 - BICO 

L-2 = 
Y 

no (se2s0 - ~8~~0~~0) + i2celc0 + i$spI (3.2) 

zi z = no (ce2ce1) + 62se1 + b 

The following dimensionless quantities will be introduced: 

r = C/A , e = (B - A)/A , 

(3.3) 

where is the instantaneous spin rate and WC is the average spin 

rate. Note that E is a measure of the asymmetry of the body with 

respect to the spin axis and will generally be a small number as 

mentioned previously. 

392 Energy Expressions 

The kinetic and potential energy 

follows 

pE=- (C + B - A@a + (C 

expressions may be written as 

+A - B'$a +(A+B- 

(3.4) 



3.3 - The Equations of Motion -- 

The Lagrangian function, L = KE - PE, may be used in conjunction 

with the Lagrangian formulation to derive the differential equations 

of motion. For a conservative system, Lsgrange's equations are 

%a ( 1 R - $ = 0 , (i=1,2,...,n) (3.5) 

where n is the degree of freedom of the system. Equations (3.5) 

lead to 

8, + Q2floce2 + i)zselcB1 - no(i2ce2s2el - B2ce2c2el) 

- n2c2e 
0 

se ce 2 11- r[iG2cel + +.e,ce, + noB2ce2(c2el - s2el) 

- nok2e2s81 - +2e2selce1] + 3( l-r)S$s2e2se1cel + B CZfls20 

. . 
+ 2&$0~0 + e2cels0c0 - i1i2se1s0c0 + 62icel(c20 - ~~0) 

+ n,i2(ce2s20 + se2sels0c0) + mo~se2s0c0 - ~oQ1ce2ce1s0c0 

- no~ce2se1(c20 - ~~0) + ~162se1s0c0 + 6; se1ce1c20 

+ ~o~2se2selspIcpI - ~o~2ce2s2elc20 + noi)lce2ce1s0c0 + no~2~e2~2elt220 

+ $j( 4se2c82ce1s0c0 - c2e2i3elcelc20 + 3s2e2selcelc20)] = 0 
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. . 
e2c2el - 

. . 
2e2else1cel - Lio(-i)2se2selcB1 + Qce2c2el - i$ce2s2el + ilce2 

+ i2se2sy1) - @se2ce, - se2ce2s2el) + r[ii3el + Zilcel 

ii s2e + 2i 6 se ce 21 21 I1 + n,(-~,se2se1ce, + ilce2c2e1 - ilce2s2el 

be2cel + i2se2selcel + n,se2ce2c2el) I - 3(1-r) 

'2 - elselsOcO + Qi2el(c20 - ~~0) + i2c2elc20 

2~2~1selcB1c20 - 2i2ik2els0f20 + fio( -tye1se2s0c0 + i2celce2s0c0 

Ijcelse2c20 - EIcelsB2s20 + ;32se2se1celc20 - f+e2c2elc20 

. 2 2 elce2s ep 0 -t- 2ke2selcels0c0 
. 

- elce2s 2 0 - ~2ce2cBls0~0 

- ~2se2se1cB1c20) - 4$(se2ce2s20 + s2e2sels0c0 

c2e2sels0c0 - se2ce2~2elc20)1 = 0 

. . . . 
240 + e2sel + ii2+el + no( -B2se2ce1 - ilce2sel)] - ~[+0~0 

+ i?2t)lcel(c20 - ~~0) - 2 1 i2c2e ~0~0 + n (6 se ~0~0 ’ 2 
012 - elce2selc 0 

(3.6) 
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- i52se2cels20 + 

+ 62se2cBlc 2 0 + 

~2ce2sB1ce1s0cB + t)lse2s0c0 + ~lce2se1s20 

~2c82se1ce1s0c0) + r@s2i2s0~0 + se2ce2se1s20 

2 2 - se2ce2selc 0 - c2e2s2els0c0 - 3c2e2s0c0 - 3se2ce2selc 0 

+ 3se2ce2se1s20 + 3s2e2s2els0c0)] = 0 

3.4 Equilibrium Positions. The Linearized Equations of Motion -- 

Inspection of the differential equations of motion, Eq's. (3.6), 

shows that an equilibrium position exists when e1 = ii, = e2 = G2 = i? 

=O and 0=M/2. This is the equilibrium position studied by 

De Bra and Delp [6] in which the unsymmetrical rigid body has a position 

that is fixed with respect to an orbiting frame of reference. The 

corresponding equilibrium position was studied by Nelson and Meirovitch [ll] 

for the case of a rigid satellite with elastically connected moving 

parts. We are now interested in the case in which the satellite has a 

spinning motion relative to the orbiting frame of reference so that 

0 and i are not constant. However, one notices that by linearizing 

Eq's. (3.6) the equation for the coordinate 0 becomes uncoupled; 

hence one can solve for 0 independently. 
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In view of the above conclusions, we wish to define an equilibrium 

position el= e2 = 0 . We note that el and e2 define the attitude 

of the spin axis relative to the orbiting frame of reference and 

e1 = e2 = 0 corresponds to the position in which the spin axis is 

perpendicular to the orbit plane. 

the 

the 

The equations of motion, Eq',s.(3.6), can be linearized about 

position el= Q2 = 0 . It will also prove convenient to change 

time scale to the nondimensional one defined by 

(3.7) 

so that Eqs. (3.6) can be written as 

0-i’ + K$-2-r(l+cr)l - e,Cl-r(l-m)] 

+ E { ei(l - $ r)(lscY)s20 + e; [ $ r(l+o) 

+(1-i r)(lto) ~201 - el [ $ r(l+cy) 

+(1-$ r)(l+cu) ~201 + e,(l - $ r)(koc)s20} = 0 
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8 19 2 - ‘i [2-r(l+(r)l - @,C4-r(h)] (3.8) 

+E t c ei - $ r(l+o) + (1 - $ r)(l+Q) c20 1 
- e; (1 - $ r)(l+cu) s20 + el (1 - $ r)(lW) s20 

- e2 [I ",r(kol)-(l- 4 r)(k) ~201 } = 0 

0" + 2; 3 g s20 = 0 

where primes indicate differentiations with respect to 7 . 

3.5 The Soinning Motion 

One notices from the third of Eq's.(3.8) that, for motion in the 

neighborhood of el = e2 = 0 , the spinning motion is independent of the 

coordinates Gl and G2 . One can attempt a solution for 0 in terms 

of a power series in E = (B-A)/A as follows 

0 = (Ilot + eB1(t) + s202(t) + .D. 

from which it follows Mediately that 

(Y=CX 1 + E O;(T) + E20a(‘) + l ** 

(3.9) 

(3.10) 
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Substituting the above into the third of Eq's. (3.8) and equating terms 

of equal powers of e to zero, we obtain a sequence of ordinary 

differential equations. 

equations allows one to 

(Y=cY d-6 1 dT 1 

The sequential solution of these differential 

write 

C2YlT +c2 ~c4cY~ 
64r2a3 ’ 1 

+,3 -J-(c&y-5ca17)]+..* 
C 1024r3a5 1 

c20 = 1 CZVT-+E C A2 (c4y - 111 

8ml 

+ c2 

II 

9 (c6cy - c2+J + l . l 

s6r2cx4 1 

s20 = EC-y + E -L sky 
8~1 

(3-a 

+ E2 [ ,--&-$ b6y - 5sa;(17)] + l ** 

1 
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An alternate approach that will also prove useful results frcmn 

noting that the third of Eq's. (3.8) can be integrated once to yield 

i 1 112 =iU o 1+SL2 [ c20 
'"1 

(3.12) 

3.6 The Hamiltonian Function 

Our interest is in the motion about the point Ql = G2 = 0 . 

In this neighborhood, as can be seen from the third of Eq's. (3.8), 

the coordinate 0 can be considered as an explicit function of time. 

One can conceive of a constrained system which is a system identical 

with the system under consideration but with the 0 coordinate a known 

function of time, namely the solution of the third of Eq's. (3.8). 

When el and e2 are not small, the motion of this system is not in 

accordance with the complete, nonlinear equations which indicates that 

constraint forces must be added. However, as el and e2 approach 

zero, the terms coupling the 0 motion with the Gl and Q2 motions 

approach zero and the constraint forces approach zero. As a result of 

this assumption, one can devise a Hsmiltonian function containing 

el and e2 as variables and 0 as an explicit function of time. 

This Hamiltonian is consistent only with the linearized equations and 

must be used only when Bl and e2 are small. The Hamiltonian in 
- 

question can be written as 
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H=a~Bi+~d~-L=$ A 0: (Bf (1+es20) + e$ (c2e 1 

+ rs2el+ c c2elc20) + E 0ie$ cels20 + IL- r(a+celce2)2 

- s2e 2- c2e2s2el + 3(r-i)s2e2c2e11 + E C3(ce2s0 + selse2c0)2 

- (se2s0 - ce2selc0)21 ) (3.13) 

3.7 Annlication of the Lianounov w Analvsis to the Spinning, -- 

Unsymmetrical Satellite in a Circular Orbit -- 

Application of the proposed theorem to the problem of the 

spinning, unsymmetrical, rigid satellite moving in a circular orbit will 

now be undertaken. To this end the assumption is made that 0 is an 

explicit function of t so that one can use the Hamiltonian function 

as given by Eq. (3.13). The Hamiltonian function evaluated at the 

equilibrium position, el = e2 = ei = f3$ = 0 , is 

% = $ A fi: [- r(l+o)2 + 3~ s20] (3.14) 

so that the testing function can be written as 
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V=H- % =$Afi$ (~+Es~o) + 

+ E @it?; cel s20 + Cr(l-c2elc2e2) 

19 $ (c2el + rs2el 

+ a&i-cefe,) 

- s2e 2- c2e2s2el + 3(r-l)s2~2c2ell + B C3(ce2s0 

+ selse2c0)2 - 3~~0 - (se2s0 - ce2se1c0)21 } 

+ Ec2elc20) 

(3.15) 

Recalling that V = KE3 + U , where ICE* includes the terms that are 

quadratic in the velocities and is a positive definite function in the 

neighborhood of the equilibrium position E , the dynamic potential, 

U, can be written in the form 

u= $ A a: [r(l-c2elc2e2) + z&x (1-celce2) - s2e2 - c2e2s2e 1 

+ 3(r-l)s2e2c2el + 3+e2s0 + selse2c0)2 - 3E s20 

- &e2s0 - c82se1c0)2] (3.16) 

As pointed out in Section II it is sufficient to check U for positive 

definiteness rather than V . 
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It is easy to check that 

aLI 
zq =@- =o (3.17) 

e1=e2=o 2 s,=e,=o 

which confirms the existence of the equilibrium at 6l = 62 = 0 . 

To determine the conditions for positive definiteness of U we apply 

Sylvester's criterion [21]. According to this criterion we conclude 

that U is positive definite if the following conditions are satisfied 

i&i 
as,2 E 

= A hLE [r(l-ky) '- 1 - bc2@l > 0 

(3.18) 

$$g!-(&2)2 0 - = A2 Cl4 [(r-l+& (4r 4+ra) 
12 E 

+ c(-4r + 4 - 4m + 31~~0) - 12~~~~0~~03 > 0 

It should be noted that if E is set equal to zero the same stability 

criteria is obtained as was obtained by Cringle [g] and Ltiins [lo) 

for the symmetrical body. When E is not zero the time dependent 

terms are introduced through CY and 0 . For small values of E 

the boundmy of the r!gion within which U is positive definite can be 

determined by neglecting terms in s2 . Writing the binomial expansion 

of Eq. (3.12) and retaining the first two terms only, gives 
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a= al + B j&q 6X3 = al + E: & (2~~0 - 1) 
1 

(3=19) 

so that Eq*s. (3.18) become 

r(l+ol) - 1 - s [& + (1 - 
1 

Yg' c20] > 0 

(3.20) 

(r - 1 + roll)(4r - 4+3X5)+ e[(4 - 4r - 4rC5+$5- -5) 
1 1 

+(3rcll-m a -I- g, c20] > 0 
7 -I A A 

The expansion used in Eq. (3.19) is valid only when 3”/Wl < 1 and 

the retention of only the first two terms is justified when 

3E/2J.al << 1 . Consequently, the above expression will not be used to 

investigate the region in which rol is small. In addition, only the 

region in which al is positive will be considered and E will be 

assumed to be sufficiently small to neglect terms in E . Under these 

restrictions Eq*s. (3.x)) may be extremized by selecting c20 to be 

zero or one.* It is then found that the requirements for stable motion 

are satisfied if the following four conditions are fulfilled: 

* In doing that the stability requirements are rendered stronger than 
necessary and stability may occur even though the resulting inequalities 
are not satisfied. 
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(3.21) 

Figure 3.2 shows the resulting boundary of the stability region for 

E=O and ~~0.1 , where the boundary for e = 0 is identical with 

that shown by Cringle cg] and Likins [m] for the smetricd body. 

The second part of the stability theorem csn now be applied. 

If the linearized equations are assumed to describe the motion near 

E, one may use Floquet's theorem [27] to state that the solutions are 

of the form 

4 
8 = 

I 

(uj+ivj)T 
1 fj(T) e 

j=l 

(3.22) 
4 

8 - 
(uj+ivj)7 

2 = 1 gj(') e 
j=l 

in which fj(T) and gj(7) are periodic functions with the same period 

as the periodic coefficients appearing in the differential equations 

of motion, which is Z%/ZDl in this case. Consequently, fj(7) and 

gj(T) may be expanded in terms of Fourier series so that 
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4 Q) 
8 
1= 1 I f 

jk 

eujT ei(vj+2kal)T 

(3.23) 
4 Q1 

9 

11 

ujT i(vj+2Wl)T 
2 = 

gjke e 
j=l k=* 

In the neighborhood of the equilibrium position, terms in the 

third and higher powers of the coordinates and velocities will be 

neglected as small compared with second power terms, so that the partial 

derivative of the testing function V with respect to time may be 

written as 

al) 6: + (2 + 4”1> ef!jl sZzlT + 8alele2 CBIT } + o(c2) 

Substituting Eq's. (3.23) into Eq. (3.24) and integrating 

to 7 an expression of the following form is obtained 

(3.24) 

from To 
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Four cases must be investigated. 

b. u 
3 

+ UJ > 0, v 
s 

+ VA f aal f T 

(3.W 
CO 

2 
+ Lid s 0, v +va+acct =:a 

J 1 1 

d. us + UR > 0, v +va+&a =a3 
3 1 1 

'Ihe first two cases are nonresonant cases, so that the value of the 

integral varies periodicaJ.ly with time. Case a. represents stable 

motion whereas case b. is clearly impossible since, for large t , 

the Hsmiltonian would oscillate with increasing amplitude. Cases c. 

and d. correspond to resonant motion. Case c. represents bounded 

resonant motion and case d. represents divergent motion in which the 

Hsmiltonian tends to increase without bound with time. Whereas one 

cannot distinguish between cases c. and d. it is possible to say that 

unstable motion does not occur in the nonresonant case for which the 

Hsmiltonian is positive defitite. 

As the value of B = (B-Al/A approaches zero, in the limit, 

the motion must reduce to 

57 



0 
‘up -i 

1 =&lle +a12e 
f-y + 543 ei8T + al4 e-iW2T 

(3.27) 

e2 =a 21= 
iy7 -iw 7 

+ a22 e 
-iy 

+ a23 e 
iW2T 

+ a24 e 
2 

Where + U.I~ and 2 ~2 are characteristic numbers associated with 

the equations 

e-i' + 6,$ L2-r(l+cxl)l - Gl Cl-r(lWl)l = 0 

(3.28) 

0” 2 - ei C2-r(lml)l - e2 C4-r(4y) 1 = 0 

The chmacteristic nuxibers have the values 

in which 

b = - $ cl - r(l-5) - r2(lml)2] 

(3.30) 

c = [4 - r(!ja;+S) + r2(l+cxl)(kxl)j 

A comparison of Eqs. (3.23) and (3.27) shows that 

(3.31) 



Consequently when E is small, Eq's. (3.26) lead to the conclusion 

that resonance must occur neer the values 

(m = 2 1, 2 2~4 (3.32) 

Figure 3.3 shows the locations in the plane al vs r near which 

resonance will occur in the linearized system and for small E . It 

should be noted that the present method gives us the location of 

instability regions. To describe the width of these regions different 

methods must be chosen as shown in the following discussion, 

3.8 Determination of the Repions of Instability - Infinite -- 

Determinant Method 

The linearized equations of motion of a spinning, unsyrmetricsl 

satellite in a circular orbit may be shown to be: 

[ -p+E(rl-% -+ COS all- 3 + ei sr 1 sin 2X17 

-L sr2sin XZIT + e1 /3+1-s (rl - k ) [I cos XX17 1 + e(e2) = C 
1 

C f3+e (r1 ‘ii+ cos ray 1 - 8; srlsin Xx17 

+ Glsrlsin 2X17 + 8 2 P+jr(l-5).2 ll 
(3.33) 

+ s(r2+*) cos a!.g] + O(E2) = 0 
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in which 

p = r(T+l)(l - 5) - 2 

rl= (1 - @+q (3.34) 

r2 = (1 - +@+q 

and terms in the second and higher powers of B are grouped in the 

terms O(e2) and will be neglected in the first approximation. 

The regions 

of period 2T ad T 

Period 2T 
Q) 

e1 = 

of instability are bounded by periodic solutions 

which can be written in the form 

(aln sin q' -I- bin cos T94', 

(3.35) 
03 

e2 = 2 (aa sin 97 + ba cos mlT) 
r-e&3,5... 

Period T 
co - 

e1 = II (&ln sin %T + bin cos qT) 
n&,2,4,... 

(3.36) 

G2 = (aa sin m31' + ba cos WIT) 
n=o,2,4,... 
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where advantage has been taken of the specific form of Eq's,( 3.33) in 

eliminating the even n terms in Eq(s.(3.35;) and the odd n terms in 

Eq’jd3.36). 

The general procedure at this point consists of substituting 

a finite nuuiber of terms of either Eq',s.(3.35) or (3.36) into the 

equations of motion, equating the coefficients of equal harmonics, 

setting up the determinant of the coefficients of the assumed periodic 

series, expanding this determinant, and solving the resulting equation 

for the instability boundaries. This then yields an approximation of 

the values of the parameters that satisfy the infinite determinant. 

Experience with this procedure shows that for the problem under 

consideration the use of only the n = 1 terms of Eq's.(3.35) will 

define a first approximation for the regions near "1 = (Xl and 

W2 =o: 1 , where wl and u2 are the natural frequencies of the 

unperturbed system. If the n = 3 terms are also included, a better 

approximation of the regions near wl = al end w 2=% till be 

obtained together with a first approximation of the regions near 

y = 304 and UJ~= 3al. As more terms are included, the accuracy of 

the approximation of the lower order parametric resona.nces is improved 

and regions at which the natursl frequencies are approximately equal 

to successively higher odd multiples of the average spin frequency, 

049 are defined. When Eq.'s.(j. 36) rather than Eq"s.( 3.35) are used 

the even numbered regions are defined in a similar manner. 
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II 

Inspection of Figure 3.3 of the previous section shows that 

regions near 5 = ml and w 2 = 5 are to be expected for a 

satellite configurations with 1 < r < 1.8 . These regions can be 

defined in the first approximation by assuming 

e 1 = "1 + bl sin 2ZlT + cl cos XX17 

(3.37) 

0 =a 2 2 + b2 sin ml7 + c 2 cos 22 7 1 

Substituting Eq's.(3.37) into the equations of mot-ion, Eq's.(3.33), 

and equating the constant terms, the coefficients of sin 2X17 and 

the coefficients of cos q 7 to zero, gives the following six algebraic 

equations: 

a,(W) +b2E: C al(rl-$-)+$r2 1 ]+cl+yl-~byjj$]=O 

yP1 -I+ - b2SDlB + cl(-k; + g+ 1) = 0 

alsrl + b2 C -44z~+~+3r(l-$)-2j - c1p"1f3 = 0 

a2 @+3r(l-2 ll 
) - 2i + bls [al(rl + 4 ) + $ rl] (3.38) 

+ c2E C czlr 1 + 3 '(r,+&) ] =0 

&2sr2 + bl(-kif + p + 1) + c2c C cyrl+ 3r2++ 1 =o 
a2e (r2 + g ) + blZIB + c2 ll -kT +.B + 3r( 1 -3-2 =o 1 

63 



For nontrivial solutions to exist, the determinant of the coefficients 

must be zero. In this case the determinant can be expressed as the 

product of two 3 x 3 determinants and will be zero if either of the 

3 x 3 determinants is zero. 

I B+3r(l- 3-2 [ -L 6 c+l+b -I 
) + 5 rl] E: [al + $ (r2 +&I 

J. 1 

Er 2 -4Cx;+j3+1 p"1B I 0 

E(r2++ 9 -4.cx~+~+3r(1-~)-2 

(39 39) 

In the process of determining the boundaries of the regions of instability 

(which are surfaces in + rJ e space) it is convenient to express 

the value of 011 in the following terms: 

=1 = iii + 4~ + A2e2 + . . . (i=1,2) (3.4-a 

where ii is the natural frequency of the system in the absence of the 

periodic terms in the equations of motion and is given by 
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iii 1 
S2 + 

2f3 
+ 

= 3r(l 2 
- 

2) 
- 1 

k 
S2 + 

2f3 
+ 

3r(l 2 
- 

2) 
- 1 

2 > 

I 
l/2 112 

- (B + l)CP + 3r(l - $1 - 2j } 

2 

where ~lwill be associated with the positive sign under the radical 

and ';, 2 with the negative sign. '.The boundaries of the regions of 

instability car, then be pressed in terms of Eq. (3.40). One finds 

that 4 = 0 and A2 takes on either of the following values 

+2= 
1 

(W)Cl6c$ + ;g(-2P-3*l-P2)] 
{ 

+ ( rl - & > C -r2Qp+rpl( -&:+@+3r-l)] - ~(-4cx~+@+l) +2.+~8) 

or 

a2= 
1 

(B+3r-2)G.6$+zxl(-2~-3~1-~2)] 

(3.42) 

+ 55 (5 + 4) ( -4$+8+3r-2 ) + T ( -4+4c(+@k3r-2 )} 

Figure 3.4 shows the resulting stability boundaries for r = 1.5 . 
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One can also investigate the regions of princ%paJ. instability, 

tiich are defined as the regions where CXl is approximately equal to 

one of the natural frequencies. Reference to Figure 3.3 shows, however, 

that for most values of r this type of resonance till not be experienced 

for ZUJ 
Yl 1' To describe this region we will first assume a solution 

of the form 

0 1 = "1 sin 5' + bl cos CXIT 

(3.43) 

8 =a sin CzlT + b2 cos a 7 2 2 1 

Substituting into the equations of motion, Eq's,(3.33), and equating 

coefficients of the periodic terms one obtains the following four 

algebraic equations 

C 2 
"1 -%+ 

Trl -y- E+f3+1 + $ (rl - -IF ]+b2[yP+>(rl -&) E 
4%' 1 

'2 - +-E =o 2 1 

"1 C 9, ?P + 2 rl +++ : e] -t b2 [-r$ + % e+B+zr(l - 2) 

-2+$(r2+k -+ E-j=0 

(3.44) 
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- 

'- 2 alrl 
a2 1 FL -7 E +B+sr(l - +2) - 2 - 2 (r2 -kA il % 

+bl C -S+ 0111 2 rl+g) G+~E]=o 

For nontrivial solutions to exist, the determinant of the coefficients 

must be zero, which in this case can be expressed as the product of 

the following two 2 x 2 determinants. 

$+@tl+ 5 Coirl+rl - 
%L 

3 alp + 5 La r +r 11 2-S 
I = 0 

al@ + 5 Calrl+rl + {;1 $+P+jr(l$) - 2 + $kxlrl+r2 + A 1 
FL I 

-alp + 2 Calrl+r2 - 31 4 $+Pl- $Lalrl+rl - *I 
= 0 

-af+B+3r(l - 2) - 2 - 5 [Trl+r2 + & + 
1 

1 -alp + 5 Calrl+rl 3 4l 

(3.45) 

The definition of (Xl at the boundary of the resonance instability 

region as given in a fashion similar to Eq. (3.40) will be used. 

al = ii+ + 4 e + . . . (3.46) 

The natural frequencies of the system are given in Eq. (3.41). After 

expanding the above determinants 4 can be evaluated on the boundary 

as follows 
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&.pk 1 
4al(Z+-3r+l-82) 

[ y(al+P) ( alrl+rl+r2) 

+ (p+l)(qr,+r, + j+) + (Bc3r-2)(alrl+rl - &I 1 (3.47) 

Figure 3.5 shows the resulting stability boundary for r = 1.5 . 

We can see at this time that the analysis method based on an 

infinite determinant defines the resonance instability regions for which 

the natural frequency is approximately equal to a multiple of the 

frequency expressed in the periodic terms of the equations of motion 

wi F “3”1 (3.48) 

In its present form this method does not define the regions of the type 

(3.49) 

3*9 Determination of the Regions of Instabiliw-Asymptotic Method -- 

With the aid of Eq's. (3.11), the linearized equations of motion 

of the rigid unsymmetrical spinning body, Eq's. (3.8), may be expressed 

in the following form: 
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0; -I- i3,a; + B 0 21 
= e{dll(c2+ o1 + dE(s2qT) e2 

+ d13(s2c@ "; - du(c2ay) e;} + c2icd21 c2yT 

+ d22 &17) 01 + d23(S4%‘) 82 + d24(S44’) @i 

- Cd21 ~257 + d 22 d+WIT) 0;) + .e3((d31 C2qT + d32 c4Q1T 

+ d33 ~697) e1 -t (d 34 s2a4T + d35 s6~i7) e2 + (d36 S25T 

+ d37 ~697) ei - (dp ~297 + d32 d+qT.‘-+ d33 C&YIT) Q&} + O(c4) 

(3*50) 

8; + 530-i + B4@2 = s2wlT) el + e12(c2alT) e2 + e13(C2%T @i 

- e ,(s29T) 0;) + e2{e2,(S4qr) el + (e22 c2%T + ‘23 C4alT) e2 

+ (e22 C2TT + e24 c413T) ei + e21( sbp’r) e;) + &3((e31 ~3257 

+ e32 s66(1d e1 + (e 33 
~20(17 + e34 c40(17 + e35 ~657) e2 

+ (e36 C2C5T + e34 Ck~y1T + e37 C6cy17) 6; 



-I- (e38 s2yr+e 3g S"Qi') e;} 

+ o(e4) 

where all terms up to the 3rd power of E have been included and 

y2- r(l-i) (l+al) - G2(1-z] 3 
8r 12: 

8, = - 1 + r(l-$) (l+c~l) + ~~(1~g) -+ 
8r al 

B3 = - 2 + r(l$) (l+q) - c2 (1-z) 3 
8r a: 

84 = - 4 + r(l$) (4+5) + e2(1-$) & 
1 

dU = (1-E) (ly) - $ 

d12 = - (15) (4+q) 

dlj = - (1-g) (l+q) 

d21 = a1 & 
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d22 = - 9 
64r t$ 

f (1-g) (1+2q) + 
8r o! 1 

d23 = - (1-g) (4+20rl) -+ 
8ar 1 

d24 = - (1-g (1+2q) _3 2 8ar 1 

d31 = 135 1CG4r2 J - (1$) (1+3ac,) 29 
1 25k "r, 

d32 = 9 
E8r2 a3 1 

d33 = - 27 
1024r2 3 

+ (1-g) (1+7&l) + 
2% ql 

d34 = (l-$)(20+3al) ----& 
1 

d35 = - (l-$1 (4'3cvl) + 
2% ql 

d36 = (1-$) (5+3ql) &; 
1 

(3*51) 
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d37 = - (1-g) 0+3q -& 
1 

ell = - (15) (1+q) 

e12 = 

e13 = 

e21 = 

e23 = 
9 -- - 

64r a 3 
(l-$) (4+2el) --+ 

1 8r cy 1 

e24 = 
9 -- - 

64r 3 

e31 = (1-g) (5+3$ 29 
256r c$ 

e32 = - (1-g) (1+3q) --& 
1 

e33 = 
135 

1024r2 4 
+ (l-$) (4+2al) ; q 

2% a1 

- (1-E) (4taJ 

-4 - (1-g) (l+q) 

- (1-g) (1+2q1) + 
8r w 1 

3 
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e34 = 
9 

E8r a: 

e36 = 

e37 = 

- (1-g) (4+7q) g2 4 
2% wl 

27 
1024r2 4 

+ 0-g (1+30(1) g2 
256r CY~ 

27 
1024r2 gl 

- (1-g) (1+70(1) g2 4 
256r al 

e38 = (l-g) (5+7cUl) g2 
256r q: 

e39 = - (l-$) (1+7cY1) 92 
2% a: 

The left side of each of Eq's. (3.50) may be considered as 

unperturbed equations, while the periodic perturbations are given on 

the right sides, and consist of periodic terms multiplied by displace- 

ments and velocities. When terms of first order in s are considered, 

the perturbing terms can be seen to include coefficients of frequency 

2CYl' Terms in e2 include periodic coefficients of frequency 2ql and 

4a1; terms in a3 include periodic coefficients of frequency 2q1, 49, 

and 6~1; and if terms in higher powers of e are considered, additional 

higher frequencies are included in the perturbations. 
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Two types of motion will. be studied - nonresonant and resonant 

oscillations. The resonance oscillations will be further distinguished 

as to resonance frequencies that are approximately equal to natural 

frequencies and resonance frequencies that are approximately equal to 

the sum or difference of natural frequencies. The term natural frequency 

is given to the frequencies of oscillation of the system in the absence 

of the periodic terms and are given by 

w = 
13,+B4-B,B 

i 3 + (-l)i+l [( 
B2+BqmB,B 

i 2 2 
i>' - B2B4y2f2 

, 

(i= 1,2) (3-52) 

We Will designate E1a.s the higher natural frequency ad w2 as the lower 

one. The unperturbed equations admit soiutions of the form 

EJ1 = al c(Gl T+ljl) + a2 c(W2 ~+6~) 

(3.53) 
e2 = alAl S(u1,T+61) + a2A2 s(G~T+~~) 

in which a1 and a2 are arbitrary amplitudes, 61 and 62 are arbitrary phase 

angles, and xl and A2 are the ratios of amplitudes of 81 and Cl2 motion 

necessary to satisfy the unperturbed equations of motion and are given by 
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(3.54) 

3.9.1 Nonresonance Oscillation - 

When the natural frequencies of the unperturbed system are 

sufficiently different fYom the frequencies appearing in the perturbation 

terms on the right-hand side of Eq's. (3.50), the equations of motion 

can be satisfied by solutions of the form 

5 = a1 c($l7+61) + a 2 cb2~+S2) + u,~( T)C + y2(7)c2 + . . . 

(3.55) 

g2 = al(~l+d11+~2AE+...) ~.()~7+6~) + a2(h2+6h21+E2x22+.=o) ~(J1~7+$) 

+ U21(T)E + u22(T)E2 + . . . 

in which the frequencies $1 and q2 are almost equal to the natural 

frequencies and are given by 

$ =u, + 11 & ,P+... e+A 
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(3*56) 

In the above assumed form of solution, al and a2 are arbitrary small 

amplitudes and 61 and 62 are arbitrary phase angies. The ratios of 

amplituded, given by the l's, and the difference between the frequency 

of oscillation and the natural frequency of the unperturbed system, 

given in terms of the A .., are treated as constants. 
=J 

In a somewhat 

more general form the amplitude could be treated as a function of 

time, but formal substitution into the equations of motion and solution 

for the coefficients of the time-dependent terms in the amplitude shows 

the latter to be zero for nonresonant oscillation. 

In the case of nonresonant oscillation no coupling occurs 

between the two principal oscillations (one near the frequency i"l 

and the other near z2) so one needs to consider only the case of a 

single oscillation. Consequently, the solution derived below will 

yield the solution with frequency of the principle oscillation near 

w 1 when the coefficients are derived using zl and will yield the 

solution with principle frequency nesr z2 when z2 is used in computing 

the coefficients. The assumed form of solution is given below and 

the expansion will be completed through all terms in s2. Hence, assume 

e1 = a c($ 7+6) + ull c + uuc2 



e2 = a(A+dl+c2A2) s($ 7+6) + u21c + unc2 

Jr =;+ A 1 E + A2 c2 

8-i = -a(Z+gAl+c2A2) 

r- 

S(~ ‘+a) + U;l c + Ui2 c2 

0; = al; X+c(T;; X1+A1 X) + .c~(G? h2+hlhi+b2~)] c($ 7+6) 

+ %l 6 + u;2 6 2 (3=57) 

0; = - a[8 + 42A1(U) + s2(A: + 2A2z)] c($ 7+6) + u&c + u;c2 

e;’ = - a-ii? A + c(261T; ?L+$ t Al) + e2(2Al t Xl+E2 h2+A; A 

+ 24 ?I? A)] s($ T+S) + II& c f u,$~ c2 

Substituting into Eq's. (3.50) and noting that 

if -ARIU)-B2=0 

(3=58) 

* 
we obtain 

-.. 
*Although it appears that the equations are separated according to their 
order in 8, one should recall that u! 13 

and uU 
id 

contafn terms in ~1, f?... 
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ca { [-2AlG + Bl(al+Alh)] c($7+6) + I.$” + “lu$1 + P2tJ 

2 
+c a { [:-(A>A2E) + (;X,+AlAl+A2h) B1j c(W+S) + s2 + p&2 

+ ~,q,) = c$ c(2yr+‘1’T+6)[dll - d12$ + d13E - dllhtjl 

-t- ; c(2qr-+6)[dll + d12h - d13z - dll~~-~ 

+ c2 c2qlT(d -L 11 11-dllu;1) + @a+ U 12 2143%) u + (3*59) 

+- “; c(~Q~T+)T+~)~- d12hl + d13Al - dU(i$+AIA) + d21(lix)] 

+- ; c(2ql~-f’?-6)[d12~l - d13Al - d,(=ll+A,l) + d2+i;jX)] 

+- ; c(ky+-r+6)[Id,, - d23h + d24= - d22=l] -t ; c(‘+a,T-)-+I,, 

+ d23 1 - d24W - d22zA 
JLI 

c a - (c (2Alz~+85) - AlP3 + 5B41 s ( drT+6 > + u& + S,u;, 

+ p4u2,} + c2{a[ - (2ApX1 + z2h2 + AFA) - A2p3 

f h2p4 S( qT+6) UG2 + fl U’ 1 312 
+ e4u2, ; s(2cy 
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- 

+V+6) [eu + eul - e13z - ellEA] + t S(2qT-$7-6) [eu - ezh 

+ e13G - eU AZ) + c2{s 2~l~(ell~ll-ellu21> -I- c 2yT(e12u21 

+ e13"ll > + -i "s(2ni'r+$~+6) [e12X1 - e13A1 - ell("Xl+AIX) 

+ e22(h-E)] + ; s(2yT-$~-6) [-eull + e13Al - eU(Gll+AIX) 

- e22(X-z)] + t s(~cY~T+$T+~) [e21 + e23X - ee4w + e21EA] 

+- ; s(40(1~-$~-6) [e21 - e23X + e24U) + 
e21 

iijx D 

Equating the coefficients of the first power of e in Eq's. (3.59) 

and requiring that ull and u21 include the terms of frequency other 

than JI gives 
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+ 

%1+ 

+ 

; c(2w1T-$T-6) [du + d& - d13z - dl16] (3.60) 

%1B, 
-I- u21p4 = ; s(2qT+$~+6) [en + e12X - e13G - ell(uX] 

: s(2qlT-?rT-6) 
c 

ell - e12h + e13z - e 
11 

iiE 1 
The first two of Eq's. (3.60) are satisfied only if 

A1 = X1 = 0 (3=61) 

The second fxo of Eq's (3.60) are satisfied, ignoring higher order terms 

in E arising in the total aerivativekerms of ull and u 22' when 

un =fu a C(2alT+$T+6) + f12 a c(~c~~T-I$T-6) 

(3*62) 

"12 =%l a s(~~~T+~~T+~) + g 12 a s(2qT-$7-6) 

in which 

1 
fll = P 

1 

e2 
- (29+n)2J [ B4 - (2"1+G)2] + E$33(2a~+q2 

{ dll(l-Xi;) 

- d12h + d13w IC p4 - (2~34-3~J - [ell(l-G) + e12A 
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- e13ii ] 

g”=k 

1 

I - (2c?isj)2] ~p4-(2Dl+792J + ele3(2~l+~)2 t d&-l=) 
2 

- d121 + d13z I[ fi3(2ml+Ti9 
i c + e,(l-Xi> + eEX - e 13; FJ2 IC 

- (2CY1+$2] (3 063) 

1 
f12=F - 

1 

L P, .- (2q-i")2 e,-(2rYp)2 + e,e3(2cu,-q2 
ic dll(l-lz) 

+ d12x - d13"' -1 II 8, - (2C5-;12] - [ell(l-=A) - e12X 

+ e13G ] [PpYpqj 

1 
g;12 = 2 

a2-(2q-iii)2 a,-(2q42 -I- Ey3(2q-F)2 
d&-AZ) 

+d 12 k-d iij l3 ] [fi3(291-G)] +[eu(l-GA) - e12X + e13~~8,-(2ci-~)']} 

Next the coefficients of s2 terms in Eq's. (3.59) can be equated.* 

*Note that, in general, terms arising from the derivatives of uU and 
u22 must be included. 
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After substitution of Eq's (3.61) through (3.63) and applying harmonic 

balance the result obtained is given by the following four relations 

4( Xf5-2G) i 12GPl = $ { du(fll+f12 ) + d12 (gll+gu ) 

-d13[f&+$ + f&al-~)] - d,&$qi++~) + “&+)-j} 

A2(-2”-f3) + h2(e4-*) = $ {eu(-fll+f12) + e12(gn-g12) 

-e13 .fu(2wl+~) [ -. f12@ql-")] - dll[ -gll@q-u) + g12( ayE)] 

b-64) 

II 

%2 + $ u’ 122 2l2=z + Pu a c(2rylT+$T+6) [a21(1-h)] + ; c(‘k57 

-$T-6)[d2#-El)]+ ; c($ T+dm+6) [d22(1 -~~)-d2~h+de4ikUfl 

- dUgU + d 13 ('&1+w) fU - dU(2al+z) gll.- + ; c&r57 1 

-$T-6) [d22(1-?i&) + dz3)i - d24i" + dllfU > 
- d12g12 
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(3-65‘) + d13(291-“) f12 - dll(2wl-~) &j 

$2 + l-li2B-j + u22PJ+ = 2 a s(2c/17+$~+6) [e22(l-E)] 

+ F s(~cY~T-$T-~) [e22(E-k)] + : s(4ul~-$T-6) [e21(l+il) 

+ e23h - e24z - elLfll - eugll + e13 (2ffl+3 fn + ell@y 

+ tJ> g11 1 + ; s(4wlT-$T-6) [e21(l+~A) - e23X + e24U) - ellf12 

- e12g12 + e13 (254 f12 + e11(2q-(Log12J 

Equations (3.64) give the following values for A2 and A2 

A2 = ; 1 
(h13y2iij)(fi4-G2) + (2Wh+p3) pp c( dll(fll+f12) 

+ dU(g11+g12) - d~3[f.$cy+~)+ f12(2Q"-;)] - dll[gll(2~l+') 

+ g12(2+9]>(e4-~21 - <ell(-fn+f12) + e12kll-g12) . 

- e13 fn(2cy+G) [ - f12@wl-~)] - ell[-gut2wl+$ ,(3.66) 
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+ d12(gU+%2) - 43 [f 11 @y+~) + f12(+‘,l - dll[gll(2al 

+a + g12(24”)]> 53+B3) + < ell(-fU+fE) + e12(g11-g12) 

- e13 fn(2wl+Z) [ - f12(2y-")] - ell[-gn(2Q1"") 

+ g12bl- 

and from Eq's. (3.65) one can obtain Us and u22 

52 
= f21 a c(2qlT+1!'T+6) + f 12 a c(2wlT-$7-6) 

if 
23 

a c(4wlT+~7ts) + f24 a c(~cY~T-$T-~) 

(3.67) 

u22 
= ggl a s(~c/~T+I!!~T+~) + g22 a s(2cylT-$7-6) 
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II 

+ g23 a s(447+)7+6) + g24 a s(4ty17-67-S) 

in which 

1 
f21= 5 

d21(1a)[p4-(29")2] - e2p")[s31(29+3] 

IR2 - (2ctp12], [P4 - (2cqq2j - e;P3(2c@)2 

1 
g21 = 5 

~2+q133(2 y+q + e22(X-U)[B, - (2e1+E)2] 

82 - (29,+32 la4 - (‘y+G) - BlR3(2q+q2 

f 1 d21(1-G$3q - (2cp)2] + e22(X-q131(2cYl-q] 
22 = 5 LB2 - bYl-‘“)2j 1 f34 - (2qq2] - pp3(2,,-q2 

1 
g22 = F 

d,,(l-~~)[B,(2cu,-;;)] - e22(X-z)[P2 - (2qq2 1 
b2 - (2cp)2J lP4 - (2cp)2J - pl@3(2q-~)2 
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= L- 
f23 2 B 

c 2- c4u1+a2] Le, - 

-WX) - d23X + d24"; + dllfll - d12gll + d13(2+) f 11 

- dU(W1+E) gll] [IS, - (45+$*] - [e21(1+zX) + e23X 

- e24z - ellfll - e12%l+ e13 c%5 + 3 fll + e&q1 

+ 3 Qll ] [q4cY1+a] } 

(3.W 

1 1 
Q d22(1 

2- (4~+")~] p4 - (4al+7i92] - qe3(4al+q2 

-iA) - d231 + d24G + d f 11 11 - d12gll + d13(2~l+~,fil 

- d11(2cy+z)g11 I[ B3(4m16) 1 [ + e2,(1+E11) + e231 - e24E 

- ellfll - e12%l + e13 (2ac1+7-q f 13 + ell(2y+~) gn I[ B, 
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-WA) -I- d 23 h - d24’ + dUf= - dl$12 + d (2q -z) f 
13 1 12 

- dll(2y-~) gE 1 b4 - (4~5-G)~] - [e21(1+;;X) - e23h 

+ e24z - eUf12 - eug12 + e13 (23-Z) fE + e11(201 

-w> gJ2 ] [B,(4y)l) 

Es24 = $ 
1 

p4 - (4Lv,-q2 - BlP3(4czl-q2 iI d22(1 

-51) -t- d 
23 

h - d24U) + dllf12 - d12gu + d 13t2 .i-z) f12 

- dll(2Oi-") g12] [B3(4al-z)] + [e21 (l+zh) - e231 + e24G 

- ellf12 - e12g12 + e13(2g4 f12 + e11(2y3gE] [B2 
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Consequently the nonresonant solution of Eq's. (3.50), showing terms 

through the second power of 8, can be written as 

e1 = a c(~T+-6) { + (fllc+f21c32) c(257+$7+6) + (f12c 

+f 22e2 c(2y-67-8) + f2g2 c(4cY17+tiT+6) + f24"2 C(4cYprT-6) 

(3.69) 

Cl2 = a (A+e2A2) s($T+6) + (g,,c+g 21”2) s(2cY17+rlfT+6) + (g12c 

+ g22C2) s(~c~~T-$T-~) + g 
23 

C* s(k~~T+$T+6) + g2462 s (4W17 

- $7-6) + o(S3)} 

+ = w' + A2c2 i- O(c3) 
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Note that the phase angle 6 is completely arbitrary in the 

nonresonant solution. It can be seen that the frequency of the 

principal oscillation is slightly different from the natural frequency 

of the unperturbed system the difference being a term in the second 

(and higher) power of the small parameter, E. Additional oscillatory 

terms appear, but with smaller amplitudes. Terms of frequency 2cylf $ 

appear with a coefficient in the first snd higher powers of 8, terms 

of frequency 4~~~2 $ appear with a coefficient in the second and higher 

power of 8, and it is app&rent from the recursive process used to 

determine the oscillatory terms that terms of frequency 2nal+ JI 

appear with a coefficient in the nth and higher powers of c- It is 

instructive to look at the typical size of the coefficients appearing 

in the nonresonant solution, Eq's. (3.69). Taking as an example the 

nonresonant solution with principal frequency near the first natural 

frequency and with the following parameters: 

r = 1.5, ql = 1.0, e = 0.1 (3.70) 

One obtains 

W=W 
1 = 2.1 

(3*71) 

x = -1.433 



and the. solution is 

lj = 1.ooo73;5 

P1 = a{c($T+6) + .0153 c(2oiT”“““) + .0586 ~(2%‘~“T-6) 

+ .oOoOh c(4qfT+$T+6) - ~1062 c(hy’-q-T-6) + O(c3)} 

e2 = a -1.435 s($7+6) -.Ol& s(2a1T+q7+6) -.l203 s(2cy~-*T-6) -I 

- .00003 s(4alT+$T+6) + .0044 s(4~7-$~-6) + O(C~)} 

(3.72) 

In spite of the fact that a relatfvely large value of c has been 

chosen in the example, (10 percent difference in the transverse 

moments of inertia of the rigid body) the frequency of the principal 

oscillation is only slightly different from the natural frequency 

of the unperturbed system, and the relative amplitudes of the oscillations 

at other frequencies are seen to be small. Thus the coefficients of 

higher frequency terms are expected to be extremely small, since they 

appear only in terms with coefficients including E to a high power 

as a factor. 
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3.9.2 Resonance Oscillations 

In the analysis of the previous section, the form of the 

solution would have been entirely different if the frequency of 

oscillation, &,, had been equal to one of the frequencies appearing 

on the right side of the perturbed equations. The phase angle 

between the resonant motion and the periodic coefficients becomes 

important in this case. Also, the amplitude of the motion must,in 

general, be a function of time. Consequently, we may investigate a 

solution of the form 

el = (b+b1Ts+b2Tc2+ . ..) c(@ T+6) + p,-(T) F: + U=(T) E2 + . . . 

(3 -73) 

g2 = (b+blTc+b2TG2+ . ..) (h+~h~+~~~~+ a*.) S(@ T+6+61e+62c2+ . ..) 

+ u21h) G + U22(T) C2 + ..* 

In the interest of brevity this analysis is shown for the first 

or "principal" region of instability for which terms only through the 

first power of 8 are required. This occurs when a natural frequency 

is nearly equal to cl, so that the frequency of oscillation is 
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a= al ==+‘4, + A2e2 + . . . (3.74) 

Introducing the assumed solution into Eq's. (3.50) and again using 

Eq's. (3.58) one obtains 

b c(o(17+6) [I-2Al= + s,h,w + f$qh] + s(c57+6) [bl(-2+,h) 

- b 61~331 1 + u;’ + u,& + ~$3~ = $ c(357+6) [dU(l-lz) 

-,x+d13= +g 1 6"-6) [dll(l-A=) + d121 - d13Sj] 

(3.75) 

b 5(57+6) [-27$h - w2hl - B3Al+ B,h,] + c(cy+6) [bl(2&B3) 

+ b(%-iifl) 61h] + U& + UilB3 + U2184 = g S(301T+6) [ell(l-AG) 

+ e12 h 
- e13 

Z] + g ~(57-6) [eU(l-6) - e12 

The quantities u,~ and u21 can be selected so as to include the non- 

resonant oscillation of frequency 3ql and to include no resonant 

motion of frequency ql. The coefficients of cos vlT and sin vlT 
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(the resonant terms) can be equated to zero giving the following four 

equations. 

II 44X-23 + llPIG c6 + bl 1 I b (~.l~..2G) - ~,=436 = ; [d,]c6 

I: Al(Blh-2E) + 5p14t36 + [T b1 (Blh-*z) - 61h31-&6 = $ [d&j 

(3~6) 

1 Al(-P3-2zX) + X1(B4-g)]s6 + [2 (~A&B~) + E (R,+-~)A]~s 

1 =-- e . 2 n6 [IIS 

C 
bl Al(-B3-2~x) + hl(~,-~)$6 - [r; (2AGB3) + 61(e4-‘IX]~6 

1 =- e II 1 2 n c6 

in which 

dn = du(l-l=) -t d12X - d13z 

(3.77) 
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e n 
= en(f-iG) - e12h + e13z 

For any value of the phase angle 6 there must be only one solution 

to the four simultaneous linear algebraic equations, Eq's. (3.76), in 

terms of the parameters Al, Al, 61, and bl/b. 

Our interest is principally in describing the width of the 

possible unstable resonance region, given by Al, and in noting the 

value of the coefficient bl. Equations (3.76) can be solved to give 

A1 = $ ~26 
dn(fi4-8) - enfilE 

( ~lX-LG) ( f.i4-c2 > + /31~(23+93 > 

. (3.78) 

b1 ' ~26 
dn(E4-E2) - enfllAE 

-=- 
b 2 

When bl is not zero the amplitude orthe oscillation will become 

unbounded for large T , as may be seen by inspection of Eq's. (3.73). 

When bl is zero the motion is periodic. 

The analysis of the previous section showed that bounded 

oscillatory motion can occur on the boundaries of the resonance 

regions. Inspection of the second of Eq's. (3.78) shows that this 

occurs at 6 = n5(/2 , (n = 0,1,2 . ..). Furthermore, inspection of the 
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first of Eq's (3.78) shows that A1 reaches its largest absolute value 

when 6 = nx/2 , (n = 0,1,2 . ..). 

As a numerical example, the case of the first resonance region, 

for which G2 = cl and r = 1.5, can be selected. This case was 

investigated by the previous method, Selecting a value of E = 0.1 

we find that 

A1 = .037 cos 26 

(3.79) 

bl/b = .Ok25 sin 26 

Inspection of Eq's. (3.76) shows, as expected, that bounded oscillatory 

moWon ("l/b = 0) occurs on the boundary of the resonance region, 

since A., takes on its maximum absolute values when 6 = n5(/2, (n = 

091, ..I). Th is same approach could be repeated 

regions for which zl or z2 was approximately 

(n = 1,2, . ..). 

3.9.3 lbundaries of the Resonance Regions -- 

for other resonance 

equal to nlyl, 

The method of the previous section could be used to describe 

the resonance regions, but a less time consuming procedure can be 

used since it is only necessary to describe the boundaries of the 
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unstable resonance regions. For this purpose, one can look for 

resonance solutions to the differential equations, Eq's. (3.50), 

for which the time dependence of the amplitude (see Eq's. (3.73)) is 

zero. Also, experience with this analysis shows that the equations 

of motion can be satisfied in this case without the assumed phase 

shift between the G1 and e2 naotion, as given by the terms 61, 62, . . . . 

so that the assumed resonance solution on the boundary of the region 

of instability is 

e1 = b c(@ ~+6~) + ull(+ + y2(T)E2 + .a. 

(3J3O)w 

fj2 = b(?ij+cX +c.x. + 
jl 52 

. ..) E@T+~~) + U21(T)C + U22(‘)E2 + 0.. 

in which @ is the frequency of the resonance oscillation and can 

be expressed in the form 

@= zj + Als -I- A2s2 + . . . (3.81) 

and j = 1 or 2 depending upon whether the frequency of the resonance 

oscillation is approximately equal to El or G2. 

S5multaneous resonant and nonresonant oscillations may take 

place, with the frequency of the principal oscillation of the resonant 

WYhephaseangle 6j, (j = 1,2), should not be confused with the 
higher order phase angles in the second of Eq's. (3*73)- 
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motion near one natural frequency and the frequency of the principal 

oscillation of the nonresonant motion near the other natural frequency 

Consequently we will assume a complete solution that includes both 

resonant and nonresonant solutions. In this case the nonresonant 

solution proves to be identical with that obtained earlier. There- 

fore the complete solution includes the resonance solution given by 

Eq's. (3.80) and (3.81) plus the nonresonance solution given by Eq's. 

(3.69). In the following analysis the subscript i designates the 

natural frequency near which the nonresonant osciUtion takes place 

and the subscript j designates the natural frequency near which 

the resonant oscillation takes place. 

The assumed solution can be substituted into the equations 

of motion, Eq's (3.50) and the coefficients of every power-of c 

can be set equal 

zero* yields 

to zero. Setting the coefficients of c equal to 

b c(@ T+6j) [Al(fSlhj-:j) + hjlfilEj] + u;~ + Sl%l + P2"11 

=- ; c(‘&‘~T+$‘T+~~) [dll(l-=ixi) - d121i + d13ui] 

x- 
As before, terms in c, s2, etc. ' e . arlsing in uij and uij are carried 

forward to the higher order approximations. 
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+- 2” C(2’lT-~T-‘i) [‘~(l”ihi) + d12hi -d z 13 i 1 

-I- ; c(2q17+@r+bj)[dll(l-;sxj) - d12hj + d13wj -1 

f ; c(2~17-@F8j)[dll(l-~j~j) -E d12hj -d i3 
13 ii 3 

(3-W 

b s(C~+~~)[I~(-B 3-2zjxj) + xj1("4-"j2)] + u& + e3u;1 + “4u21 

+ e12hi - e ;ij. + % ~(257 13 = 1 

-17-6i)[eu(l-ziAi) - eEhi + e13zi] + g S(~CY~T+@T 

+6 
3 

) + e 12'j ^ e13"lj- + F 1 b s(2~~~-@r-b~)[e~~(l 

-WjAj) - e EAj+e Z. 13 J 1 

Resonance terms are of frequency @ and will occur on the 

right side of the above equations when any of the following conditions 

exists : 
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(3.83) 

The stability boundary given by the positive sign in the second 

of Eq’s. (3.83) corresponds to the zero spin case, a1 = 0, for which 

the present equations do not give a valid representation. Also we 

will consider o&y positive values of qrl. Recalling that $ and 

@ are approximately equal to zl and z2, the resonances that 

result from Eq's. (3.83) occur at 

iii 1 = u1 

(3.84) 

The first of these resonances were described in detail in the 

previous section. 

The width of the resonance region for which u)1 + E2 z201 

can be defined by assuming i = 1 and j = 2 so that 
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+ = q 

+= ti2 + Al" = 25 - & 

(3-85) 

in which terms in 6 to the second and higher powers are ignored*. 

The boundaries of the resonance region me then given by the spin 

rate satisfying 

(3.86) 

Substituting into Eq's (3.82) and equating the coefficients of the 

resonant terms one obtains 

b c(2~1~-"'7+6~)[Al(Pl1~-2~~) +Aglfllz2] = ; ~(25747 

b s(2~~1~-9.~+6,)[Al(-~~-2ijj2X~) + h,l(3k-;ii22)J = ; s(2qi7+ 

*A resonance with frequency of its principal oscillation near u\ 
(i=2, j=l) is yet to be determined. 1 
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These equations can be satisfied when 

3 - 62 = nd (n = 0, 1, 2, . ..) (3.88) 

Consequently, the boundaries of the region of instability, given by 

A, are 1 

Al=+ & 
(j3&[dll(l-~l"l)+d12~l-dl ~lj-Pl~2[e~(l-~l~l)-e12~l+e13~l] 

( @lh2-U)2 I( FJb-w22 > + ( P3+2E2A2 ) Blz2 (3.89) 

Inspection of the above relation shows th& the width of the 

resonance region is a function of the relative amplitude of motion 

of the nonresonant and the resonant oscillation, a/b. Consequently, 

unique graphs of the width of this type of resonance region, such 

as were given in Figures 3.4 and 3.5, cannot be given. In fact, if 

the nonresonant oscillation is zero the instability region disappears. 

Nonetheless, this is a true instability region, since an infinitesimal 

initial perturbation from the equilibrium would excite both the 

resonant and nonresonant modes, and unbounded resonant motion would 

occur for values of spin rate falling between the boundaries given by 

Eq's. (3.86) and (3.89). If a Mgher order approximstion of the 
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location of the stability boundary is desired, the boundary may 

be described by further terms in the expansion in terms of powers 

of e such that 

9= w2 + Ale + A2e2 + A 
3 

e3 + . . . 

5 
= L(,+E +sAl+e2A2+c 3 

212 A 
3 
+ . ..) 

by expansion of the equations of motion to higher powers of E 

and determining the constants to satisfy the equations for each 

successive power of 6. 

When the spin rate is such that no resonance occurs as given 

by Eq's. (3.83) then 

a A1 = jl = 0 (3*91) 

and 

?l 
(i> = fll a (i> c(2qiT+$T+hi) + f= a ~(2qT-+T-6~) 

(j> + fg)b C(2C5T+4%+6j) + f12 b c(2q?-@~-b~) 

(3.92) 

104 



(5) 
u12 = gll 

(5) a S(2QlT+tT+6$ + QE a S(2a(1T-$T-&.) 

+ g(J) n b 
w s(2qlT+*+6j) + gE b S(2~57-4h.5) 

where the coefficients f and g are given by Eq's. (3.62). 

The superscripts i and j may take on the values 1 or 2 and 

designate the natural frequency, Gl or E2, that must be used in 

calculation of the coefficients f and g. 

When no resonance takes place in the E order terms, the 

substitution of the assumed resonance plus nonresonance solutions 

into the expansion of the equations of motion results in the 
2 following coefficient of 6 . 

b c(@r+aj@,(-2 Wj+hjBl) + hj25B1] + q2 + 81u;2 + B25 

b = z c(@T+"~) h. 
Jl 

+ ; c(2137+$7+6~) hi2 + ; C(257+&+6 ) h 
3 $2 

+ ; d2q'-‘1'7-"i) hi3 + ; C(2qiT-@‘T-bj) hj3 + F C(40(17 

+~T+6i) hi4 + s C(‘~‘~~+‘j) h 
Y+ 

c ; ~(kqT-$‘T-6~) hi5 

+ 4 c(4qlT-~-Bj) hj5 
(3.93) 
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b ~(*+6~)[A~(-@~-2;;jx~) + "j2(B4-Gj2)]+ ug2 + 52’3 A. U22B4 

b =- 2 s(*+fij) A. Jl 
+ ; ~(2yT+h+6~) ai + ; s(2o"T+@r 

+ 6j) A. 52 
-t ; s(~o;T-$T-~~) 1. 

13 
+ ; s(2nl~&-6 ). i? 

3 33 

f 5 s(~~T+?IT+~~) ki4 + g s(4gT+@r+6j) R 
34 

+ ; S(4cYlT 

-$~-6~) Ji5 + $ s(4~y-@r-6~) A 
35 

in which 

hkl = dn(fU+fE) + du(gll+glp) - + flp(Pci 

-,)I + dl&+'l+~k) + g12(2al-ufk)j 

hk2 = hk3 = d21(l-;jjkhk) 

hk4 = d22(1-ckhk) - d h + d24Ek + 
23 k %lfu - d12gll + d13(2"1 
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h 
k5 

= dn(l-zkAk) + d 
23 k 

h - d24';k + dllfE - d12g12 + d13(2wl 

-‘k> f12 - dy+‘l-zk> +, (3.94) 

1, = en (-fll+f12) + e12b311-gE) - e13[fll(2el-+Gk) - fi2(2pl 

-'k)l - ell[ -"J$r!l+~k) + g12(20pk) 1 

a, = - R k3 = e22 ( Xk-Ek) 

'k4 = e21 (l+'khk) + e23ak-e24;Sk - eUfU - e12gll + e13(2T 

'k5 = e21 (l+'kxk) - e23Xk + e24'k - euf12 - e12&12 + e13(2ml 

Resonant motion will occur in the e2 expansion (under the 

assumed condition of no resonance in the e expansion) when Qj 

is equal to one of the frequencies appearing for the first time on 
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the right side of Eq's. (3.93). This includes 

(3*95) 

AgaLn eliminating cases corresponding to zero or negative values of 

CY 1, these resonances are seen to correspond to 

b-96) 

w i-w 12 z 49 

w -w 12 = 4q1 

The first two of these cases were investigated by the method of the 

previous section. 

The resonance region for which zl + w2 z 44i can be described 

by assuming 
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-- 
* 1 =W (see the third of Eq's (3.69)) 

(3237) 

@=?i2+A 2 
2P = 4y - q 

Equating the resonant terms of Eq's. (3.93) one obtains 

b ~(4cy-W6~) A2( -2z2+X2B1) + x,2z2fll] t 

b =- 2 ~(40’~7-67+6~) hgl + ; c(~w~T-~!'T-~~) h 
15 

b s(~P~T-~T+~~)[~A~(-R~-~U)~~~) + 122(R4-53] 

b =- 2 s(h~~T-'bT+6~) a21 + 

These equations are satisfied when 61 - 62 = nsC, (n = 0, 1, 2, 

The equations can be solved to give 

(3-98) 

. . . 1. 

A2 = $ 
1 

t h21( 64-s I 

(3.99) 



The corresponding values of the spin rate at the boundaries of the 

instability region are obtained using 

oi = $ [@+$I = + [El + i2 + ?A2 

[Per Eq. (3-99)l 

(3.100) 

+ s2A2 + o(e3)] 
[Per Eq. (S-99)1 

Note that the nonresonant frequency correction given by Eq. (3.66) is 

included, and is calculated for nonresonant oscillation with 

frequency near El- 

Inspection of Eq. (3.99) shows that the width of this 

resonance region is again a function of the relative amplitude of 

nonresonant to resonant motion, a/b, and the previous remarks 

are again applicable. 

When the spin rate is such that no resonance occurs as given 

by either Eq's. (3.84) or (3.96), A2 and hJ2 are given by Eq's. 

(3.66) and the nonresonance terms are 
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(0 “I2 = f21 a (0 (3(2~yT+$T+6~) + f22 a c(~@~T-$T-~~) 

w + f23 a (i> c(~o~~T+$T+~~) + f24 a c(4r(1~-llrT-b~) 

+ f$)b c(2o T+&I-6 1 j 
) + f(j) 22 b c(~c~~T-@'L6j) 

(J> + f23 b (J> c(~c.~~+*-C~~) + f24 b c(~B~T-@T-~~) 

(3.101) 

(i) 
u22 = g21 

a (1) s(~~~T+:!~T+B~) + g22 a s(~cY~T-~!~T-~~) 

(2) + g23 a (1) 
s(~w~T+C~+~~) + g24 a s(4cv T-I!!T-~~) 

1 

+ g;:)b s(2ry T+@r+6 1 j 
) + g(j) 22 b ~(2~pk-bj) 

(J> + g23 b w &cJ~T+@~+~~) + g24 b S(4rYlT-'k-bj) 

where the coefficients in the above expressions are given by Eq's. 

(3.68) and the superscripts i and j denote the natural frequency 

that should be used 5.n calculating each coefficient. 

When no resonance takes place in the e or order terms, 

the substitution of the assumed resonance plus nonresonance solutions 

into the asymptotic expansion of the equations of motion results in 
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the following coefficient of 3 e . 

b A3(B1Aj-2Gj) + h B W r: 33 1 3 1 c(@r+bj) + u" + fi u' 
13 1 23 + B2U13 

= $ c(@r+Sj) m 
iI1 

+ F c(~cY~T+I/~T+~~) mi2 

+ 4 c(2y~+@~+6 ) m 
3 32 

+ ; c(25 7-$7-6i) m. 
13 

+ g c(2cv17-@'f-6 ) m 
j 33 

+ t c(~cY~T+H+~~) mi4 

+ g c(4q7+“‘aj) m 
J4 

c(49 T-$7-&) m. 
15 

+ E c(4vl~-*-bj) mj5 + E c(6~y~7+~~7+6~) mi6 

+ $ c(6c~~T+@r+S ) m 
J ~6 

+ E ~(6q~~-l!f7-6~) mi7 

+ $ c(6cY17-@r-6 ) m 
3 37 

(3.102) 

$A362 j j- 3 h z B ) + hj3(P4-zj2)] s(*+bj) + “;I3 + B3”i3 + @4"23 
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) n 
j 31 

+ : s(20~7"$7+6~) nT2 

+ g ~(20i7+&+6~) n 
32 

+ . . . 

In the above equations, the coefficients m and n are functions 

of the parameters of the problem and are not given here. 

Resonant motion will occur in the c3 expansion (under the 

assumed condition of no resonance in the 2 L or 6 expansions) 

when @ is equal to one of the frequencies appearing for the first 

time on the right side of Eq's. (3.102). This includes 

i9 = 64 + 9 

(3.103) 

Again eliminating the cases corresponding to zero or negative average 

spin rate, sly these resonances can be seen to correspond to 

w 2 = 35 
(3.104) 
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The stability boundaries for the first two cases, using 

Eq's. (3.66), (3.81), (3.91), and (3.103) are given by 

1 
(3 = 5 Gi + e2A 2 

3 
+sA +... 3 1 (3.105) 

where only A 
3 

takes on different values on the two boundaries of the 

instability region, so that the width of the region is measured in 

terms of e3. A similar form of solution for the instability regions 

described by the third and fourth of Eq's. (3.104) occurs and the width 

of the instability region is proportionalto the third power of the 

smdl psrameter e. 

It is evident that the asymptotic expansion process, when 

carried to the nth power of e, will describe additional instability 

regions with frequencies. 

z N 
i = ncy 1' (i = 1,2) 

(3.106) 

u, - 1+ "2 r 2nfxl 
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and that the width of the resonance instability region will be 

proportional to $. 

3.10 Comparison with Previous Analysis 

!The previous sections established the approximate location of 

the instability regions of the unsymmetrical spinning rigid body 

(see Figure 3.3) and included analyses to define some of the insta- 

bility regions in greater detail. 

The only previous analysis known to have been performed on 

this problem is that of Kane and Shippy LIZI in which a method due 

to Cesari [201 is used to check the stability of motion of the 

unsymmetrical spinning body for specific spin rates and ratios of 

moments of inertia of the body. This previous analysis states that 

approximately 230 points were checked, and on the basis of these 

points, stability regions were defined. !Two of the stability charts 

of Reference [ ~1 are reproduced on Figure 3.6, comespondbg to 

average spin rates given by ryl = 1 and ol = 5. On Figure 3.6 the 

nondimensional parameters 5 and K2 are given by 

C-A r-l 
%=Tr=1+G 



_.._ 

GLl) 
F 

(191) 

-K 1 

FIGURE 3.6 

STABILITY CHARTS OF RE~FCNCE Cl23 
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Figure 3-7 shows a replotting of these stability charts of Reference 

1103 in terms of the nondimensional parameters used in the present 

research -- r and e. The stability boundary on the lower portion 

of Figure 3.7 can be seen to be a function of ~1, the average spin 

rate, and this boundary was shown in Reference [l2] for ~1 = 1 

and~=5- Superimposed are the stability boundaries predicted by 

the requirement that the Hamiltonian be positive definite, as given 

by Eq's. (3.21). Comparison of the boundaries predicted by Reference 

1121 with those of the present research indicates that the requirement 

that the Ramiltonian be positive definite at all times may exclude 

small regions of parameter space in which stable motion is actually 

possible. This is not unexpected since the requirement that the 

lkniltonian be positfve definite was seen to be a sufficient 

condition for stability to exist, but not a necessary requirement. 

& comparison with Figure 3.3 it can immediately be seen that 

additional regions of instability not shown on Figure 3.7 are 

predicted in the present research. Specifically, additional regions 

of instability are expected in the case of c C C 1 for an average 

spin rate of one, ol = 1,with moment of inertia ratios, r, of 

approximately 1.39, 1.73, 1.83, and 1.94 and for pi = 5 with manent 

of inertia ratios of approximately 1.64, 1.82, and 1.99. 

Figure 3.8 shows the estimated regions of instability for 

"1 = 5 and small 8, as defined by the methods of the present 
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research. This figure shows the locations of four regions of 

resonance instability, corresponding to 

(3.108) 

w +iYl 12 = 25 

The first of these regions, referred to as the region of principal 

instability, corresponds to the instability region shown on Figure 

3=7, and physically corresponds to the region in parameter space in 

which the body is spinning about an axis of intermediate moment of 

inertia. !lhe region shown in Figure 3.8 is the first approximation 

given by Eq. (3.47), and can be seen to agree closely with Reference 

[121 for small 6. Improved agreement at larger VaheS Of 6 

would be expected if a higher order approximation were used, since the 

width of the region would then be corrected by terms proportional 

to e2 and higher powers of e. 

The first approximation of the region of resonance instability 

for El -2~1 is shown in Figure 3.8, using Eq's (3.42). As expected, 
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the width of the region is approximately proportional to e2 and 

consequently is very narrow for small R. 

The locations of instability regions for which cl + w2 

'3 are shown as dotted lines. As discussed in the previous 

section, the width of these instability regioris is a function.of 

the type of initial disturbance to which the body is subjected. 

Figure 3.9 presents a similar stability plot for ql = 1. 

The remarks relating to Figure 3.8 are again applicable and in 

addition, several added types of instability region are found to 

exist. Three regions are seen to be superimposed near r = 1.0, 

including a region of principal instability corresponding to E2 

z ~1 as well as one for which El r ql. 

A region corresponding to u)1 + z2 r 4s is seen to appear 

in Figure 3.9. Its width was found to be a function of the initial 

disturbance as previously discussed and as is in general the case 

for instabilities near Gl f z2 r 2nql. An additional instability 

region is also seen on Figure 3.9 for which zl z 3qlo The 

width of this region has not been defined, but it is expected to be 

very narrow as its width was previously shown to be proportional 

to e3* 
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SECTION IV 

SPINNING SYMMETRICAL SAllELLIIIlE INANELLIPTIC ORBIT 

A circular orbit is often assumed in satellite stability analyses 

due to the inherent simplicity of mathematical form; On occasions the 

orbits are elliptic, obtained intentionally or unintentionally. When 

elliptic&L orbital motion is considered, the equations of motion describing 

the attitude motions of a rigid body are found to include periodic 

coefficients. 

A rigid spinning symmetrical body in an elliptical orbit is found 

to have an equilibrium position in which the spin axis is perpendicular 

to the orbit plane. A previous analysis of this problem cl31 dealt with 

the attitude stability of motion about the equilibrium position, but 

the method of analysis that was employed was restricted to the linearized 

system and included only checks of the stability for specific values 

of the parameters of the problem. In fact it is the same method as 

used in Reference 12. Beletskii C28] used a KBM method to study the 

case of a nonsymmetric satellite in an elliptic orbit. His case is diffe- 

rent than the case discussed in this section in the sense that Relefskii's 

analysis is restricted to one-atiensional libration in the plane of the 

orbit about a configuration of no spin relative to an orbiting system 

of coordinates, 

The analysis presented in this section gives an analytical solution 

for the stability characteristics of both the nonlinear and linear systems 
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in the neighborhood of the equilibrium position, for relatively small 

orbit eccentricity. An analysis based on the methods discussed in 

Section III will be employed. 

4.1 Orbital Motion 

The orbit path of the center of mass of a rigid body traveling 

under the influence of an inverse square gravitational field is known 

to be a conic section. The gravitational attractive force is assumed 

equal to K/R 2 where K is the product of the earth's mass times the 

universal gravitational constant and R is the radial distance between 

the earth's center of mass and the satellite center of mass. The 

assumption of a uniform inverse square gravitational field is an ideal- 

ization equivalent to the assumption that the earth's density is a 

function of radius alone. In many satellite systems the desired conic 
. section is an ellipse, implying periodic orbital motion. 

According to Moulton [2g] the elliptical orbit parameters can be 

expressed as periodic functions of time consisting of series of terms 

in increasing powers of the orbit eccentricity, E. These relations are 

R= - (CO6 T)E + $ (1 - CO6 2T>E2 

+i( cos T - CO6 3qc3 + $ (CO6 27 - CO6 4T)E4 + . . . > 
(4.1) 

0 = 7 + 2(sin T)e + 3 (sin 27)e2 + t (- sin 7 

+y sin 3T)E3 + & (-11 sin 27 + y sin 47)~~ + .OD 
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in which Rs is the orbit semimajor axis, 0 is the angular position 

of the satellite measured from a radial line through the perigee and 

7 is the mean anomtiy which is a nondimensional quantity related to the 

time, t, and the orbital period, T, by 

7 = 2Jr t/T (4.2) 

The orbit period is c30! 

T=2xK -l/Z’ R3/2 
6 

(4.3) 

The series expansions for R and @ in powers of the eccentricity 

E , Eq's. (4.1), have been shown to converge for value of E up to 

0.667 c291. This region of convergence is more than adequate for the 

present study, since the eccentricity of earth satellite orbits seldom 

exceeds 0.1, and the principal interest is in nearly circular orbits 

possessing even smaller eccentricity, so that one can justify treating 

E as a small parameter. 

The influence of the attitude motion on the orbital motion of 

the satellite is negligible when the satellite dimensions are small 

compared with the distance from the center of force to the satellite 

center of mass. 

4.2 Coordinate System 

An orbital frame of reference with its origin at the satellite 

center of mass and its orientation as shown in Figure 3.la is chosen. 
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Axis a is along a radial line from the center of force (center of the 

earth) to the center of the satellite, axis c is perpendicular to the 

orbit plane, and axis b is perpendicular to axes asnd c so as to 

form a right hand system a,b,c. (Note that axis b is not always 

directed along the orbit path as it was in the case of a circular orbit.) 

Hence, a, b, c forms an orbiting frame of reference in which a and b 

are the radial and transverse coordinates of planar motion. The orien- 

tation of the satellite relative to the a, b, c reference system is 

obtained by three successive rotations e2, el, and CD as shown on Figure 

3.lb. 

The z axis is taken as the symmetry axis and the mass moment 

of inertia about this axis denoted by C whereas the mass moment of 

inertia about axes perpendicular to z is denoted by A. The analysis 

of the symmetric case is simplified by using the El 79 5, axes. The 

angular velocity components of the body along these axes are 

4 
= - 8 se2 - Q, = 

3 
= - 6 ce2 se1 + f32 cel = $ [- 0’ ce2 se,, + e; cell 

4 
= n, = 6 ce2cel + ‘e, se1 + ;P = FIQ1 cg2cel + 

+ e; se1 + ~$1 

(4.4) 
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where the dot designates differentiation with respect to time and the 

prime indicates differentiation with respect to T . 

The position of the satellite symmetry axis is described in terms 

of the angles 81 and e2. All possible positions are described by using 

the ranges -2 < e1 < $ and -5( c e2 5 IC. Analogymaybemade 

to the description of points on the surface of the earth, with g2 the 

longitude and e1 the iatitude. At the points 01 = 5 (correspond- 

ing to the poles) the coordinate system is singular in the sense that 

partial derivatives with respect to 8, are not defined. 

4.3 Expressions Enera 

The kinetic energy associated with attitude motion of a symmetric 

satellite can be written in terms of the angular velocity components 

along the 5, 7, 5 axes 

2 + 0’ se2) + (e; ccl - 0’ ce2 sell21 

+ C(,’ + e; se1 + 0’ ce2 cell2 } (4.5) 

The gravitational potential energy associated with attitude motions 

of a symmetric satellite reduces to 

PE = - 2 -$ (A-C) s2e2c2el 
2 (4.6) 
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Note that the translational kinetic energy of the center of mass and 

the potential energy due to altitude have been omitted. This again 

implies uncoupling of the attitude motion and the orbital motion and 

will be referred to as orbital constraints. 

4.4 Equations of Motion -- 

We shall seek to derive the equation of motion for a 

satellite by means of Lagrange's equations. To this end we 

Lagrangim 

2 
L=KE-PE== 

T2 
+ 0' se2)2 

+ (e; Ml - 8’ ce2 sq2] + c (cq’ + e; se1 

symmetric 

write the 

(4.7) 

+ 0’ Ce2 ce,,2} + 3K (A - C) s2e2 "2e, 
2R3 

An inspection of Eq. (4.7) reveals that the generalized coordinate 

tn does not appear in the Lagrangian. Furthermore it will be assumed 

that there are no nonconservative forces present so that (D is a cyclic 

or ignorable coordinate. Furthermore, R and 0 are known functions 

of the mean anomaly T . Consequently, Lagrange's equations of motion are 
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d 
G -g- =o 

2 
(‘+.8) 

The third of Eq's. (4.8) can be integrated immediately to obtain the 

generalized momentum about the spin axis, p cp , which is an integral 

of the system and should be regarded as a constant quantity 

pm 
T 

=2rc 3L = F (cp’ + 0; se1 + 0’ co2 ccl) = const. 
acp’ 

(4.9) 

This integral can be used to reduce the degree of freedom of the system 

by one, using a procedure known as the ignoration of coordinates intro- 

duced by Routh [I], [31]. According to this process the Routhian of the 

system can be devised in the form 

2rr2 
=7 A (8; { + 0' se2j2 + (0; ccl - 0' ce2 sell2 

- ~~ r + 2 1 r e; se1 + 2 Q r 0' ce2 ccl 

+ 3Jcr2 (1 - r) s20 
4~c~R~ 2 c2e 1 (4.10) 



in which 

C r = ii 
g t Q = 2s (4.U 

and where Eq. (4.9) has been used to eliminate ~2'. 

The equations of motion become 

(4.12) 

which can be written 

e; + e; (2 - Q r) + el (a r - 1 - 2s2) 

= e; [2(1 - ce2 c%,) - e; se1 ccl - Q r(l - celYj 

+ el Q r(1 - ce2 sel 
-) 

81 
- (1 - c2e2 ml 3 > (1 + 2e2) 

1 

- (3 + ij e2) (1 - r) s2e2 ccl 2 ] 
1 

+ IJ CT 
{ c 

-49; ce2 c2el - 2 ~3 r ce2 se1 + 4 c2e2 se1 ccl 

- 9(1 - r) s2e2 se1 cell + ST k se21 } 
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+ e2 { ~27 [- 58; ce2 c2el - Q a r ce2 se1 

+ 7 c2e2 se1 ccl - F (1 - r) s2e2 se1 ccl ] 

+ s2T [5 se2 ] } + 0 (~~1 (4.131 

eg + ei (Q r - 2) + e2 C Q r + jr - 4 + e2 ( g r _ 

= e; C 1 2 - c el , + I 8; [2 se1 ccl e; - 2(1 - ce2 c2el) 

1 r 
se 

+ Q r(1 - cell + e2-Q r(1 - cel Tip 
- 

+ (3r - 4 + 8 e* r - +$ c2) (1 - co2 c2el > ) 
2 -J 

- 2ce2 se1 cel he2 c2el 0; 

- 2 Q r Se2 Cel + (13 - %> se2 ‘82 c2el 7) 
+ e2 { 527 [- 5 ce2 se1 ml ] + c2T [5 “2 c2el ‘i 

- 5 a r se2 ccl + $ (41 - 27r) se2 ce2 c2el] ) + o(s3) 

The t5me dependent orbital motion given by Eq's. (4.1) has been included 
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in the above equations and all terms through the second power of the 

orbit eccentricity have been included. Note that linear terms in the 

variables and their derivatives have been added and subtracted in the 

above forms of the equations of motion so as to render them in a form 

that will be useful in the subsequent analysis. 

4.5 Dynsmic Equilibrium Positions 

Inspection of the equations of motion, Eq's. (4.13), shows that 

they are satisfied at the position 

(4.14) 

This then is a dynamic equilibrium position at which the spin axis of 

the symmetrical satellite is perpendicular to the orbit plane. 

A number of useful observations can be made regarding the form 

of the equations of motion,Eq's. (4.13), in the neighborhood of the equi- 

librium position. The terms grouped on the left are products of constants 

times terms in the first power of the displacements and their derivatives. 

The terms on the right are grouped in terms with constant coefficients and 

terms with time-.dependent coefficients. The terms with constant coefficients 

can be seen to be very small. in the neighborhood of the equilibrium position, 

their magnitudes being proportionalto the third and higher powers of the 

displacements, 81 and C$, and their derivatives. 

The time-dependent terms in Eq's. (4.13) are all multiplied by 

powers of e . The coefficients of e to the first power consist of 
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products of the displacements and velocities to the first and higher 

powers multiplied by terms harmonic in time and of frequency 1. The 

coefficients of e 2 on the other hand possess harmonics of frequency 

2, etc. 

' If the equations of motion are linearized in the neighborhood 

of the equilibrium positon (i.e. powers higher than the first in the dis- 

placements and their derivatives are discarded), they take the form 

e; + e; (2 - R r) + 81 (a r - 1 - 2e2) 

= e i c c7-4et - 2 e1 (2 R r - 4)] + s7[2e2 ] } 

+ e2 { [ ~27 - 58’ 2 + e1 (7 - g a rl] 82{5e2] } + ok31 

(4.15 

e; + e-i (A r - 2) + e2 [ ~2 r + jr - 4 + e2 ( g r - $fij] 

= c 
bK 

C 40; + e2 (13 - 9r - 2 R r)] - s7[2el] } 

+ e2 { C27[5Bi + e2 ( $$ - F r - d R r)] 

- s27[5e1] } + ob3> 
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4.6 Liapounov-Type Analysis 

Application of the Liapounov method to determine the stability 

of motion of the symmetrical, rigid body in an elliptical orbit in the 

neighborhood of the equilibrium position will now be undertaken. The difference 

between the Hamiltonian function, H, and the Hamiltonian function evaluated 

at the equilibrium position, HE , will be used as a testing function. 

The Hsmiltonian function has been shown [l] to be related to the 

Routhian by 

H=$$ei + -lR 
1 

2f12A = F ei2 + ei2 c2el - Ot2 ( s2e2 + c2C12 s2el) 

2 
+ a r - 2 R r 0' ce2 cel - 3 $ 5 (i - r) s2e2 c2e1] 

(4.16) 
so that 

(4.17) 

Introducing the time dependent motion, we obtain the testing function 

V = H - s = 9 { ei2 -I- e;2 c2el 

- (s2e2 + c2e2 s2ei) [ 1 + (4 CT) e + (2 + 7 c27)e2 
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+ $(9CT + 23~3~)~~ + l .0 1 + 2jr(l 

ce2 @1). [I1 +( 2 or) c + $27) e2 + $ (- CT 

+ 13 c37)e3 + . ..I - 30 - r) s2e2 c2el 1 C. 

+ (3 CT)C + $ (1 + 3 ~24~~ + 6 (27 CT 

+ 53 C3T)C3 + 0.. 11 (4.18) 

As before we will define K I?3 as the portion of the Hamiltonian 

which is quadratic in the velocities. The remaining terms in the 

Hamiltonian, defined as the dynamic potential U, are 

2n2A u t - 
T2 t - (s2e2 + c2e2 s2ei) p + (4 CT) c 

+ (2 + 7 c~~)E~ + $ (9 CT + 23 C3T)E3 + . . . 1 

+ 2 a r(1 - ce2 co,) 1 + (2 cT) 6 + 2 c2T c2 2 

+ $ (- CT + 13 ~37)~~ + . . .] - 3 (1 - r) s2e2 c2el l 

+ (3 cT) t3 + + 3 .27)e2 + i (27 CT 

+ 53 c3T)e3 + . . . I> (4.19) 
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It IS evident that KE* is positive definite in the neighborhood 

of the equilibrium position, so it is only necessary to check the positve 

definiteness of ^L' tc detcrmise the positive definiteness of V. Again 

applyfig ~~Iv~s%~~'E criterion we comlude that Y is aositve definite 

if 

(4.20) 

which gives the following requirements 

Rr - 1 + e CT(2 R r - 4) + e 0 2 + C2T 1ij.e r 

- 4 + o(e3) > 0 (4.21) 

Jr + jr - 4 + c 42 R r + gr - 13) + e2[ 5 r 

For small values of the orbit eccentricity e we can determine the 

boundary of the region within which V is positive definite by neglect- 
2 ingterms in 6. For small s the corresponding approximate inequalities 
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(4.22) 

k? r > 4 - 3r + s CT (5 - jr) 

resulting in three inequalities that must be satisfied for V to be 

positive definite for all positive v&ues of e . These ineq&ities 

have the form 

R > $ (1 + 26) 

(4.23) 

a,4-3r+ 2 
- - dr 

,+ for 
r - 31, 

- for $3 

The resulting stability boundary is shown on Figure 4.1. In the neighbor- 

hood of the equilibrium and in the limit as s approaches 0, R approaches 

9 + 1 where (y 1 is the ratio of the average spin rate to the average 

orbit angular rate as used in the previous chapter. Consequently it can 

be seen that in this limiting case the stability boundary is identical 

with that given in Sectian III and in References 9 and 10. 

The second part of the Liapounov stability theorem states that, 

given a positive definite Liapounov function, the motion will be stable if 

the following inequality can be satisfied 

t dV 
s 

t a(H 

t0 
dt dt = t0 s 

- %) dt = 23r2A J’” { (& 
at -7 t0 

2 
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Note: Nonresonance Oscillations are Stable for Configurations 
to the Right of the Stability Boundary 

Eccentricity, 8 = 0 

1.0 
r = C/A 

FIGUR3 4.1 

STABILITY BCXJNDARY DICTATED BY PC6ITIVE DEFINITE HAMILTONIAN 
SYMMETRIC, SPINNING SATEUITE IN ELLIPTICAL ORBIT 
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+ c2e2 s2el) E4 s7) c + (14 S 2T) s2 + $ (9 ST 

+ 69 s3ds3 + . . . 1 - 2 R r (1 - CB2 cfJ1) k ST) C 

+ (5 s27)c2 + i (- ST + 39 s3T)e3 + . ..] 

+ 3(1 - r> s2e2 c2e1 [3 m > G + (9 s2T) O2 

+ i (27 ST + 1.59 s3T)C3 + . . . I> dt < M(ei 

+ e: + 8i2 + e;2 ) 
t = to 

(4.24) 

In order to investigate this integral, one must know the form of the 

solutions, 81 snd e2, and in particular the frequency components if 

the solutions are periodic. If the nonlinear terms are neglected in 

the equations of motion and a correspondingly reduced Hamiltonian function 

is used, one can apply Floquet's theorem as was done in Section III and 

in Appendix B. When this is done and following an analogous procedure, 

it can be shown that, for c small, the instabilities occur when 

w2 
r 1, 

2 (n=1,2,...) (4.25) 



* 
where % and w 2 are the natural frequencies of the linearized 

system for s I 0 

?I. = j.+yr w2 = JbT (4*26) 

and 

b = g (- Q2 r2 + 6ar + 3r - 9) 

C = (Ar - 1) (1 r + jr - 4) 

(4.27) 

When the complete nonlinear equations are taken into consideration, 

Floquet's theorem is no longer applicable and other means of determining 

the form of the solution must be employed. In the next section, the non- 

linear equations are analyzed using an asymptotic expansion and it is 

found that the solutions, ei and e2 j can be written 

03 
ei = c 

A, m, n = 0 

a, 

e2 = c 
.ds m, n = 0 

Whe true natural frequencies are obtained by multiplying 9 and 
w2 by 2. 

T 
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where the a Rmn are constants or slowly varying functions of time. Also 

1, m, and n are not all zero simultaneously in the region where the 

FkuKLtonian is positive definite, and the sum of m plus n is equal to 

an odd integer. Our current interest is in the case of small oscillations 

about the equilibrium position and mnall orbit eccentricity, and under-these 

conditions 

$1 = wi 9 $2 -2 w 
2 (4.29) 

Substituting Eq's. (4.28) into Eq. (4.24) it can be seen that the 

integrand includes terms that are composed of e1 raised to an even 

power times a trigonometric function with frequency equal to an integer. 

The value of the integral will be bounded when no resonance takes place 

and may be bounded or unbounded when a resonance takes place as in the 

previous cases. For small amplitudes of oscillation and small c, the form 

of the integrsnd of Eq. (4.24) is such that resonance can be seen to 

occur in the neighborhood of positions where 

P "1 = 2q ' 

(4.30) 

P +mw + nw = -j l- 2 Q 

(m,n,p,9=L2j l - - > 
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Inspection of the above equations shows that the nonlinear system 

theoretically has resonance regions in the neighborhood of any region 

of parameter space. This has previously been noted by Bogoliuboff and 

Mitropolski under similar circumstances:* 'Because p and q may take 

up all possible integral values, the set {p/q] is compact and hence 

the ratio p/q , with proper choice of the numbers p and q , may 

approach any given number." 

As a result of consideration of the nonlinear terms, additional 

resonance regions termed "nonlinear resonance regions", that did not 

occur in Eq's. (1k.25) for the linearized system are found in 

Eq*s. (4.30) for the nonlinear system. We will classify the resonance 

regions given by Eq's. (4.25) as "linear resonance regions". When oscilla- 

tions near the equilibrium position are considered, the nonlinear terms 

with the largest magnitudes are third power products of the displacements 

and their derivatives. But even these terms are small since they include 

coefficients that have the smplitude of oscillation raised to the third 

power as a factor, and this smplitude can be made arbitrarily small 

by limiting consideration to sufficiently small smplitudes of motion 

about the equilibrium. Also, it is shown in the next section that when the 

nonlinear terms are considered, the amplitude of motion affects the 

frequency of oscillation of the system. Consequently it is found that a 

system which experiences one of these 'honlinear type resonances" when 

oscillating with one amplitude will increase its amplitude of oscillation, 

* N.N. Bogoliubov and Y.A. Mitropolski, Asmtotic Methods in the Theory 
of Non-Linear Oscillations (Delhi, India: Hindustan Publishing Company, 
lg6i), p. ig8. 
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causing a shift in the system natural frequency until a condition of 

bounded periodic motion is reached. 

As a result of the above discussion, our greatest interest will 

be placed in the resonance regions dictated by the linearized system. 

The anroximate locations of these resonance regions when E is small 

are given in Figure 4.2. 

4.7 As.vmptotic Analysis 

Inspection of the conrplete, nonlinear equations of motion, as 

given in Eq's. (4.13), h s ows them to be arranged so that the linear 

terms with constant coefficients appear on the left. 

Terms apFaaring on the right side of Eq's. (4.13) are grouped 

into (a) th e nonlinear terms with constant coefficients snd (b) the 

terms with time-dependent (periodic) coefficients. The terms with 

periodic coefficients are all multiplied by the snail parameter e to 

the first or higher power, so that an asymptotic analysis similar to that 

used in the previous section appears to offer praise of furnishing a 

meaningful solution. However, the nonlinear terms with constant 

coefficients present a somewhat different problem. Consequently, the 

analysis is presented first for the linear system with constant coefficients, 

next for the nonlinear system with constant coefficients and finally for 

the complete nonlinear periodic system. This last analysis is then 

specialized to the linear, periodic system. 
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Ratio of Moments of Inertia, r = C/A 

FIGURE 4.2 

SY&MTKtc- SA!IBJJTF.INANELKF'JZCALORBIT 
APPRO- ECA!CIoNS OFRES~AXE~S~I~~~TY 
RuxONsFQFl m IXNEARIZED SYSTQ.iAND E-xl 
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4.7.1 Unperturbed,* Linearized System 

Designating the equations of motion with the right side terms 

set equal to zero as the unperturbed linearized equations we obtain 

e;I + IJle; + e2el = 0 

(4.31) 

e; + R38i t- e4e2 = 0 

in which 

% = 2 - Rr 

*2 = 1r - 1 - 2e2 

(4.32)* 

R3 
=Rr-2 

84 =Rr+jr-4+ e2(2r - ijj?.) 2 

The natural frequencies of the unperturbed linearize'd system are given by 

*Note that unperturbed system should be regarded in the sense of a 
constant-coefficients system. 

HDifferent symbols have been used for pl and p3. This is consistent 
with the notation of the previous chapter. 
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iii = { 

6, + 84 - BlS3 

2 (4.33Y 

f (-#+i[ ( % + 2Rq - BlB3 )2- a2e4 ] 1’2 )“5 (i=1,2) 

Also, the ratio of the amplitude of e2 motion to the amplitude of 

Sl motion satisfying the unperturbed linearized system is 

2 
- 82 B3"i 

= 
f3 5. 

. J (i=1,2) 
11 84 - g 

(4.34) 

4.7.2 Unperturbed, Nonlinear System 

Designating the equations of motion with the periodic terms set 

equal to zero as the unperturbed, nonlinear equations, Eq's. (4.13) 

lead to 

e; + fJ,e; -I i: 
2 + e2el = 0 e; e2 + e:(2 - $Qr) 

14 
- ele; - E e2 + *t(h Rr - 5) - e: eg 

+23’ 
3 e1 e2 + el 1 I: eE($ar - 4 9 2 + 3r f~ g r 

- ; $) -I- 2 4 2 
e2,($Qr - s - 5e) 

+ e,4(- &Qr + 4 13 2 =j - r + rf3 3 2 
- ps r) 

We symbol wi differs from w. in that autonomous linear terms 
in c have been included in Eq'8. (4.32). 



8 + 9 - 2r + $i e2 - 3 e2 r)] + . ..} 

(4.35) 

0; + p3Oi + f1492 = 0 -C e; (e2, - 

4 3 - e'2 + ( g - 2)e2, - zj ele; + 22 1 e4 
e1e2 -+ I.2 2 

+ ($. - &ar)et]+ e2[eE(iar - !j + 2r 

- ye" + 3re2) + ei($Jr - 4 + jr - ye2 

+ se2r) + ei(- j-&j Ar + &F - $r + +$e2 

- 3 c2 r) + e:ez (- kg r + $j - 2r + FE2 

- 3 e2 r) ] + a-0) 

In the above equations, the sine and cosine terms have been expanded in 

series form and all terms through the 5th power of the coordinates and 

their derivatives have been retained. Terms in the 7th, gth, and higher 

odd powers of products of the displacements and their derivatives have 
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been neglected as they are small in the neighborhood of the equilibrium 

position. However their influence on the resulting solution will be 

discussed at the end of this section. As before, only terms in c to 

the second power have been included. In addition, the left side of 

Eq's. (4.35) has been multiplied by a factor, cr. 

The factor o included in Eq's. (4.35) can be considered to 

be a parameter of the problem, so that the solution will be an analytic 

function of o and will be the desired solution when o = 1. Follow- 

ing a procedure suggested by Kryloff and Bogoliuboff [25] and used by 

Cunningham [32], an expansion will be made as though CT was a small 

parameter. However, in this case, o is not a small parsmeter so 

that the expansion can be expected to converge to the correct solution 

only if it can be shown that the coefficients of successively higher 

powers of the parameter o becane extremely small. To this end we can 

consider an assumed solution for which the frequency of the principal 

oscillation is nearly equal to a natural frequency of the unperturbed, 

linearized system. 

2 
el = a cos * + ullo + uEa + . . . 

92 = a($ + ahi1 + u2Xi2 + - - . > sin Q 

2 + u2p + u22u + . . . (4.36) 
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i = <$ + Ailu + Ai2u2 + - - - )T + 6 

where xi and wi are obtained fram Eq's. (4.34) and (4.35), and ull, 

Us, etc. are selected to include all terms of frequency other than 5. 

The subscript i will be dropped throughout the remainder of the analysis 

of the nonlinear, unperturbed equations. Substituting the assumed solu- 

tion into the equations of motion, and retaining all terns through the 

second power in u,* gives 

a 
{ 

- T;2 + x*, + B2 } CG + 0 { a [-2EAl + PJXA, 

+ hl;j ,] c$ + q1 + %%l + P2"ll 1 

+ - A; - 2a2 + B&IA2 + hlAl 

+ $;; ) ] c$ + u;12 + 81u;2 + e,u, } + 2 {. * .} 

+ . . . = cr dllcH + dDc3@ + 
3 

+ d14c31 + d15c5@ Al(d21"S + dzc3@) 

%l + +23cQ + d24c31) + 8 (d 25 + d26C2G) 

*Although it appears that the equations are separated according to 
their order in 2a, one should recall that u' 
terms in 0, u , . . . . i3 

and u!' 
13 contain 
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+ u21 8 d27s2P + + (d28 + d2g2#) ] + a5 [..*I } 

+ 3 Q { 1 . . . + . . . (4.37) 

a { - x0"" - p3Tu + Psh} si + u{a[-2Ti~i - cU2xl 

- B3Al + ~4x1 ] S$ + u~1 + P3u-Jl + ~4~21 } 

+ u2 a { [ - AAT- 2+A42- z2h2 - B3A2 

+ 84A2 ] Sg + U& + P=j”i2 + h"22 + > u3 -t 1 . . . 

+ . . . = 0 t [ a3 ellSC + e12s3@ + a 1 5 
I: e13sP 

+ e14s3$ + e15s54' 
I} 

f u2 { a3 [4(e21st + e22s3@) 

+ hl(e23sP + e24s30) + + ( ; - $ c2pI) + Yg (- y&q) 

+ “ii 
- e25 a ( 

+ e26c2$) + z (e27 + ull e28c2@) + 8 (e2gs2*) 
I 

+ a5 . . . [ II + cr3 ,.. + . . . -t 1 
where the constants introduced in the above equations are 

1 dll = F x3; + h2($Ir - 4 + 3r + 9e2r 
5 
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- 
I 

_ 2 2 
2e) + 3xii (2 - iA r) - 3XS2+3( $Ar 

- $ - 4 2 
3s 1 1 

1 d12 = r [ 
3- -hw - X2(2 R r - 4 + jr + z e2r - g c"), 

+ G(2 - 2 A r) - h2iJ2 + ( $ ..# r _ 2 - : c2)] 

d13 = g-k x%i + 5A'Gj(&R x - ;, - &i + yx2ii2 

+ 14(- gq Rr + 4 13 2 
3-r+2" -3 3 e2r) + (- & R r 

2 4 2 + 'si + Tj E ) + h2(- bar +: 13 2 -2r+--c - 3 3e2r) ] 

d14 = ST Ji [ '1% + 5Gi(&J r - 5) -I- x3;; -I- $2 h2;;2 

- x4 (- i R r + 4 - 3r + y C2 - g e2r) - ( &. R r 

4 2 + p + 3 c ) - x2(- kJZr + 8 
3 - 2r + 7 c2 - 3e2r) ] 

%5 = ?iT C -i&h% + x;;j(&fir - $) -I- x3; + ; 12;;2 

+ x4(-& A r + $j - .r + a e2 - 3 c2r) + (- &Jr 
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- 

2 4 +15+15 c2) - A2 ( -&Jr f 8 
3 

_ 2r' + 13 
3 

e2 

- 3c2r) ] 

= 
k [x3 + 3x (2 - $ R r - 2x59 -1 

= j+[-X3 + A(2 - $Ar - 

= + 
[ 3h2ii + 3;; (2 - $ A r - 

- 4 + jr + ge2r - 2~3") 1 
e $ [ - 3X2Yii + 32 - $ A r - 

9 2 + jr + Ter - 5 2 
p > 1 

= $[I2 + 2 - $Ar - 2s I 

2Gi9 - 2x( $.tr - 4 

1 
C 

2 =5-'x +2- +Ar - 26 
1 

= As + A($Ar - 4 + jr + ge2r - 2 s2) 

= $[2?G(2 - $Ar - $lG) + h2(+r - 4 
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+ 3r+.2 s2r - 5 2 
2 p > + ($Ar - 2 - 4s2)] 

d29 = 2. '[2X",(2 - ~QII? - ;X;;) - A2 ($A r _ 4 

+ 3r + ge2r- $tz2) + (;Jr _ 2 _ 4e2)] 

ell = 6 [ 
-2 - XV) + 3h2;; - ;; ( ;Jr - 2 + 2$) 

+ x3( IL T R r - 8 + 6r - 13c2 + 9rr2) + A($,tr 

- 4 + 3r - 9 c2 + g e2r) 1 

eL2 = 6 -XW v- -2 - h2z - G($$r - 2 + 2x;;r’) 

- A3P gRr - 
8 
3 f 2r - hj g2 + 3re2) + A ( Bar 

- 4 + 3r - $i c2 -I- g c2r) 3 

e13 = i [ $ AG2 - & GA4 - z ( ; - .& g r _ z 1;) 

- ;;x2 + x5(-& A r + 9 - 2r + 13 e2 - 3e2r) 3 

4 
+ x(-&jr + 3 - r + gc2 -$e2r) + ~3( -&gr 
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8 
+ 3 - 2r + $j c2 - 3c2r) ] 

e14 
1 -2 5 4 

= i& r 2 3 xw +iF cub - f($ - &Jr - f A';;) 

- iin2 - A5 t-h 1 r + F - 2r + $2 c2 _ 3c2r) 

+ 1 (- i'l? r + 4 - jr + g e2 _ 9 2 F 8 r) 

+ A3( -&Jr+ 
8 13 2 
5 - 2r + - 3 8 - 3c2r) 1 

e15 = &[$A;' - &iiT14 - ';($ - &gr - !bX;;) 

+ 8 2 iii2 + x5( -&jar + - 5r 
2 3 2 5j + 15e 13 _ 5cr) 

4 2 + A(-& Rr + 13 T-r+,, -F _ 3 e2r) A3 ( -&Jr 

+ 8 
7 - 2r + i$- e2 - 3c2r) ] 

1 
e21 = 6 I: - 51;;; + 3h2 - v+ 2) ] 

1 e22 = '4 r- L 51; - A2 - $2 + 2 1 

e23 = ii6;;x r - 3iJ2 + (,$ar - 4 + 
13 2 3r - 2c 

154 



+ g e2r) + 3x2( $ R r - 8 + 6r - 13e2 + ge2r) ] 

e24 = t [- 2TiA - 3E2 + ( $ J r - 4 + jr - $2 e2 

+ g e2r) - x2( $ R r - 8 + 6r - 13~~ + gc2r) ] 

l- 
[ 

Rr e25 = s 274 + 2 - 2 - A2 1 
-L - Rr es e26 = F 2hw + 2 r 2 f x2 I 

1 275 e27 = F r + ( $1 r - 4 + jr - $- c2 + g c2r) 

+ h2( ,$ R r - 8 + 6r - 13~~ + ge2r) ] 

1 
e28= , p-26 + ($lr - 4 + 3r - gc2 + gc2r) r 

- h2($,tr - 8 + 6r - 13e2 + 9e2r) 1 

e29 
=2-+2- 2& t- A( $,k?r - 4 + jr 

13 2 - Fe? e g c2r) @.38) 

The first term in each of Eq's. (4.37) is zero by virtw of 

Eq. (4.34). By equating the coefficients of CT and applying harmonic 
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balance, the following four equations are obtained 

LiJy - 
2 2;) f xl(+) = a dll 4 

+ a dl3 

Al(-R3 - 23J + hl(R4 - Li2) = 2 4 
a ell + a e13 

(4.39) 

u& + 6,u;, + R2U11 = a3(dz + a2d14) c3@ + a5d15c5P 

% + 03u;1 + B4u21 = a3(eU + a2e14) ~36 + a5e15s55 

From the first two of these equations we obtain 

A, = 
a2 Cd 11 + a2d13)(e4 - c2) - (ell + a2e13) Ali 

(AlA - ZG)(R4 - G2) + RIE (P3 + ?XcU) 
(4.40) 

x1 = 
a2 [a 11 + a2d13 > ( R3 + 2x3 + (ell + a2e13) (AlA - 2W) 

(!??,A - 2G)(S, - Z2) + AIGi <R3 + 21;) 

The second two of Eq's. (4.39) are satisfied, neglecting terms in e 

arising frcm the derivatives of ull and u21J by 

ull = Al ~35 + % C55 
(4.41) 

u21 = A3 S3iI + A4 ~56 

156 



in which the coefficients are 
. 

- 9; ‘1 + - + Al ,3 (6. 4 (dE a2d14) = 3hl(ez a2e14) 

(84 - 9G2) (02 - 9G2) + 9G2AlR3 

A2 = .5 ( A4 - 25E2) d15 - 5;;;Ale15 

(84 - 25z2) (e2 - 25; 2, -I- 25w 2 Rls3 
(4.42) 

3FR3(a, + a2d14) + (p2 - 9i2)(eE + a2e14) a3 ~~~ ___.__ 
A3= (6 

4 - 9Z2) ( R2 - gG2) + 9G201R3 

5% d 
A4 = a5 

_ 3 l5 + (F12 - 25m2) e15 

(“4 - 25Z2)(n, - -2 
25E2) + 2%~ "193 

We see that the presence of the nonlinear terms, in the first approx- 

imation , introduces a correction to the frequency of the principle 

oscilation, A 1' in which the amplitude squared appears as a factor. 

Similarly hl includes az as a factor and the additional harmonic 

terms given in ull and u21 have smplitudes in which a3 appears 

as a factor. Consequently for small motion about the equilibrium 

position, these terms are very small. 

Equating the terms of Eq's. (4.37) that are proportional to 4*, 

introducing the results of the first approximation, and applying harmonic 

balance we obtain the following four equations 

*Terms arising frcm the derivatives of ull and u21 have been 
included. 
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Qwo - 
2 

2;;;) + %(RIE) = A, - glXl% + a2 [Ald21 

3%jjd '4 
+ lid23 + P 7 

1 Al 
26 + 2 8 %7 + F Ti d2g _ 1 

+a 4 

9 G2 
+ lie23 + F & 

3 ii2 3 ;i; 
'3 + P T A3 - iZ .Fi Ale26 

' Ae 
+ 2a 328 - 

& Ale2g ] + a4 . . . 
1 3 

Ult 
12 

+ p,u;, + 62u12 = a3 ~31 
{ c 

Al(d22 + 18ii Al - 3RlA3) 

+ ?‘ld24 + ?- 
3w Ad 

3 25 
+ $ ; A4d26 + & A4d27 

+ I- a Ald28 + & A d 
2 29 1 + ~50 I: Al(50A2w - 5BlA4) 

+ 5 ; A4d25 + ; f A3d26 - ik A3d27 + i A2d28 

+ & Ald2g ] + ~71 [ 2 $ A4d26 - & A4d27 

1 11 4 
+2a A2d29 _ 

+a -/ 1 . . . 
. . 
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%2 + A3U;2 + 84u22 = a2 

+ 3E3Al) + xle24 - % 

{ s33 [Al(e22 + 18A3W 

iii2 25 ii2 
a A3 + T a A4 

A1e25 - p 8' 5 w A2e26 + 2 A e 
3 27 

+ & A4e28 - & A2e2g ] + s5m Cbl(50A4G + 5e3A2) 

25 A4 + 9 z2 3 m2 2a 6 a A3 - H & A3 - 5 z A2e25 

- g z Ale26 + + A4e27 + & A e 1 
3 28 +2a Ale29 1 

25 G2 
-2 

T 8 A4 - ; %A4 - g i se26 + 
ik A4e28 

4 + & se2g , + a . . . 1) { I (4.43) 

It is possible to obtain ~ and ~2 from the first two of Eq's. (4.43) 

and to obtain u I2 and u 22 from the second two of Eq's. (4.43). By 

inspection it can be seen that + and $ include a factor of a4 and 

52 and u 22 include a factor of a5. Consequently when the amplitude 

a is small, the correction to the frequency, $, and the amplitude 

ratio, x2' as given by the second approximation are small ccnnpared with 

the corrections given by the first approximation. Similarly the amplitudes 

of the additional periodic terms, u12 and u 22' are small when a is 
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Small. It is evident f&m the recursion process that has been used 

that the nth approximation will yield values of 4 and & that 
2n include the factor a ;also u In and U2n have the factor a 2n+l 

The solution obtained in this fashion is an analytic function of the 

parameter u and the equation can be satisfied to any desired accuracy 

for small amplitudes of motion, even when CT. is relatively lsrge, 

because the coefficient of increasing powers of o can be made to con- 

verge at any desired rate by selection of a sufficiently small amplitude, 

a . When o is set equal to 1 we obtain 

OD co 

el = aces P + uln = c aces* + 1 B2m-tl cos (2IIl + l)Q 
n=l m=l (4.44) 

82 = anti) sin B + Fu2n = aAti) cos p i- ic;a+l sin (~III + 1)pi 
n=l 

in which 

d = (;J. 
1 

+ Ai1 + Ai + . . . )T + fi 

(i=1,2) (4.45) 

p = x i + 1 il + 1 i2 + . . . 

In the above, 6 is an arbitrary phase angle and the index 

i, denoting the natural frequency near which the principal oscillation 

takes place, has been reintroduced. We note that the frequencies present 

include only the odd multiples of P . Also it can be seen that no 
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additional frequencies will be introduced if higher order terms (i.e. the 

7th, gth, etc. power) in the displacements snd their derivatives had been 

included in the equations of motion, Eq's. (4.35). 

4.7.3 Ccanplete Nonlinear Periodic System 

In view of the procedure shown in the preceding section it seems 

reasonable to consider the 

to be functions of the two 

through the third power in 

equations of motion became 

complete equations of motion, Eq's. (4.13), 

parameters, CY and s . Including only terms 

the displacements and their derivatives, the 

e;l + sp; f c 
2 + p2el = u e; e2 + e2,(2 - 6 a r> - ele; ] 

+ el [ ez( $ R r - 4 + 3r + gs2r - jj. c2) + e2,( 2 I, r 

- g - f e2 1) + c { CT [e; (- 4 + 2ez f 49:) 

+ e,(- 4 -2&r+$ Rr ( - 13 + 9r > 

+ e: ( !j R r - $) ) ] + ST [e2(2 - $ e?J 1) 

+ e2 { ~27 [es{- 5 + Zj e: + 5e2,) + e,(7 - g R r 

+ e: ( 
41 $Ar - 2 + $$r)+ e2,(&ar - +))I 
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+ 627 5e2(1 
C - ; g;, 3) + ,3 {...} + . . . 

+ ( y - 2)02, ] + e2 [f$( k 1 r - ; + 2r 

--T 
l3 e2 + 3rc2) + 9:( $ R r - 4 + 3r - $- e2 

+ g e2r) J } + 8 { ST [- 291(1 - Sj e2, - $ f$) J 

2 
+ CT 

II 
e2 49i(l - 2 - 0:) + 02(13 - 9r - 2Rr 

21 + g2T ( Rr - 26 + 18,) + 9: (2 r - 13 

+ a1 I + e2 { [ se - 50,(1 - 2 2 
591 - $9;) J 

+ C27 59i(l - 
C ; 9; - e;) + e,( $ ( 41 - 27r 

- 5Jr > 
21 

+ 925 ( $Jr - 41 + 27r > 
21 

+ glT! ( g.f?r 

- 41 + 27r) ) 1) + e3 (...} + . . . (4.46) 

We will again assume a solution including principle oscillations with 

frequencies near El and TiY2, but including frequency and amplitude 
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ratio terms that are functions of both 6 and u . In addition, the terms 

-J and Vfj 'are added and will include all terms of other frequencies. 

g1 = a c($~T + 61) + b c(Jr27 + 62) + Uloo + U~OCJ~ 

+ uole + U@E 2 + UllCD + -. . 

= 4x1 2 
92 + l1oo + +o= -I- Xo1e + x,e2 + XlPo 

-I- -) S(‘!$‘- + 4) + b(% + yloa i- y2002 

+ YOlE + yo2 c + Yll e 0 + . ..I 4q2r + b2) + v 10 G 

f 2 i- v20* vole + 2 i- VW” Vll”O f . . . (4.47) 

91 = 1 w + AlOa + $oo2 + hole + AWe 
2 + Allecr + . . . 

*2 = 5 + &p + r2002 + role + r,e2 + r&J + . . . 

The above periodic form of solution has been found to satisfy the equations 

of motion to any desired accuracy under the conditions of (a) non- 

resonance with arbitrary phase angles, &$ and 62, or b) resonance 

with specific values of one of the phase angles. !l!his latter case 

corresponds to constant amplitude resonant motion that is admitted on 
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the boundaries of the resonance instability regions as discussed in 

Section II. fLnsl.ysis of the resonant oscillations would require the 

assumption of a time-dependent amplitude. However, in that case the 

frequencies of oscillation of the periodic terms would be the ssme as 

obtained in the cons-tart smplitude expansion. 

Substitution of the assumed solution, ,Eq's. (4.47), in the 

complete equations of motion can be shown to result in oscillatory 

motion including terms with the following frequencies 

+ A + m$,+ n$, , (&m,n = 0,+1,+2,...; m+n = odd integer) (4.48) 

The implications of possible resonance with this multiple-infinite 

number of frequencies was discussed in Section 4.6. 

The amplitudes of the terms on the right in the equations of 

motion that deal with the third and higher powers of el , 82 , and 

their derivatives can be made arbitrarily small by restricting our 

attention to sufficiently small amplitudes of oscillation. Thus many 

of the resonant frequencies predicted in expression (4.48) may be of 

small consequence, Eliminating all terms in the oscillation with 

coefficients raised to the fifth or higher power of the amplitude, a, 

it can be shown that the frequencies of oscillation are 

n + $lr n 2 rli,, n + 3$,, n 2 342, n + 2t5 + tf2, n + 2$, + 9,, (n=O,1,2,...) 

(4.49) 
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When E: is small, the corresponding resonance regions must occur where 

the natural frequencies take on the following approximate values 

L; +;; ;‘12 
l- 2 2' (n = 1,2,0..) (4.50) 

If we further restrict our attention to the case in which all nonlinear 

terms are eliminated we see that the frequencies present in the periodic 

solution include only 

It was previously 

resonance regions 

frequencies is 

A L 

shown that, when E is small, this results in 

where the approximate value of one of the natural 

- Nn co2=T or Ul+w2 Zn , (n = 1,2,...) (4.52) 

It would be desirable to limit our attention to the linearized 

equations of motion due to the simpler mathematical forms that are 

involved. To determine the conditions under which this can be done, the 

nonlinear equations must be considered and the effect of nonlinearity 

must be understood both as to its effect on the linear resonance 

regions (resonances that appear in the linearized case) and the 

characteristics of the resonance regions that appear only in the nonlinear 
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case. For smsll oscillations about the equilibrium position, the 

nonlinear terms with the greatest magnitude will be of the third power 

of the displacements ol and 8 2 and their derivatives. These are 

the nonlinear terms that were retained in Eq's. (4.46). The expansion 

of the complete assumed solution, Eq's. (4.47), in the equations of motion, 

Eq's. (4.46), is extremely lengthy and will not be shown here. Instead, 

the analysis is given here for a single resonance oscillatioti, so 

that the assumed solution is 

e1 = a c($~T+~~) + uloo -t U20Q2 + uole + uo2e2 +u U w+ . . . 

e2 = 4 ~i+~lo~+~a~2+~01e+h02~2+AU) S( pi~+6i)+vlo~+vx)~2 

-t volf+vo2E2+v11E~ + . . . (4.53) 

qi = ;;i+a3_0~+~02+a01E+a02E2+~EQ + . . . 

where i may take on the values 1 or 2, corresponding to oscillation 

with the frequency of the principal oscillation near - 9 or cu 2' 

respectively. Terms in the solution that involve coefficients with a 

x- This selection greatly reduces the algebraic computations, but at 
the expense of making the analysis incapable o-f describing the effect 
of the nonlinear terms on resonances involving the sum or difference 
of natural frequencies. However, the influence of the nonlinearterms 
on these resonances is expected to be similar to the effects shown in 
the present analysis. 
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factor of the amplitude of oscillation, a, to the fifth or higher power 

KXL be neglected, consistent with using as the equations of motion 

Eq's. (4.46) which are truncated in a similar fashion. By comparison 

with the preceding analysis of the unperturbed, nonlinear equations 

we see that terms in cs to powers higher than the first can be 

neglected and 

40 = a 
2 dll(BqGt) - ellBlii 

( B4;~) ( ~lhi-~~i) + el~i( B3+2hi;i) 

2 dll(B +2hiGi) + e 
h 

II(Blhio~i) 
10 = a (S4%@Sl+Gi) + B,;;i(S3+2hi;;li) 

(4.54) 

ulo = AIC 3$, 

vlo = A3s 3$, 

where A 1 and A 3 are given by Eq's. (4.42). 

Substitution of Eq's. (4.53) into the equations of motion, 

Eq's. (4.46), and use of Eq's. (4.54) gives 
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E a @JO l(Blhi-~i) + holBl;ilC( $iT+6i) + U;i + @J-V’ t 
01 

S2Uo 3 

2 +E a I% 2(% i x '$) + ~02Bl;;ilc(~i~+~i) + UC2 + p1vi2 + p2uo J 

+& a P@ll (Blhi'Si) + Qyqc( Gyy) + ufi + BIV& + B2u lJ 

=E i “cpll+p12a2]c( T+$iT+6i) t- “cp13+p14a2]c( T-QiT-hi) 

+ c~~p~~c(~+3fi~7+36~) -c a3p16c(T-34iT-36i)} + ~~ {. . .I + EQ { *. l 3 + . . . 

(4.55) 

E aCAol( -p3-Gi)Li) + h01(134Wf)ls(9i7+6i) + v$ + B3u& f i34v03 -i 

2 - +E a P-S 2( ‘B3-~ihi) * ~02(P4+h(Bi~+6i) -t vr;; + p3u;2 + 84vo J 

+ ~0 <ah&(-B3-sixi) + hll(p4'U-'F)I~(Bi~+6i) + vyl + B3U;l + @4% s 

=E a qu+q12a21s(~*$i~+6i) c + aCq13+q14a21s(7’ti706i) 

+ a3q15S(7+3$,7+3s,) + a3q16s(T-3~iT-36i)) + “Em**’ 

+ eq...] -I- . . . 
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- 

in which 

Pll = 2 - 2hiUi - & - hi 

p12 = 8 ' C2h$i+12hifGi+h3 &r-13-+) + Ar - 8 -t A:] 

p13 = 2 - 2hiUi - 4r f ki 

%4 = 6 [2h$i+L2htGi + A~(&r-l3-+r) -t & - 8 - A;] 

p15 = 5 C-6h&+12hiGi-3A$ -kc-13+gr) + &- - 8 - ~32 1 

$16 = & L-6~~~i412hi~i-3h,(~-13+gr) + .&r - 8 + h:] 

911 = $ Ai(13-gr-2&r) - 1 - ;1; i 

912 = ~c~~~~G~~~i+lrc;iSh2(~-26+18r)+hi( Jr-13+gr)] 

913 = - $ hi(13-gr-2&r) -l+$ 

414 = $ ~4+h:,6~~~i-4;;i-x:(~-26+18r)-hi(YT-13+9r)] 

q15 = & [4-3~~-6~~~i-+l&i-~~(&r-26+18r) + 3Ai(&--13+9r)] 

(4.56) 
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The asymptotic emsnsion can now proceed by equating the coefficients 

of e in Eq's. (4.55) to zero. When this is done it is seen that 

resonance conditions, in which the frequency -qi appears on the right, 

occur when 

Jli = ' + $2 ) Jli = 1 + 3$, (4.57) 

which correspond to 

Case A: Jli = l/2 (or 6,=1/2) 

(4.58) 
Case B: jti = l/4 (or Gi r l/4) 

Analysis of Case A shows that 

(P13+a2p14+a2P16 > ( 84’“;;) - 
%, =+ 

plzi ( q13+a2q14wa2q16 > 

Case A (B4’U-‘;)(i31+i) + fqqp3+a;i~i) 

(4.59) 

where the plus sign corresponds to one boundary of the resonance region 

and the minus sign to the other. A resonance instability till occur, 

to first approximation accuracy, whenever the parameters of the problem 

sre such that 

0.5 - 1% 1' 1 e <iii + < + I i 40 0.5 (4.60) 

Case A 
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One can see that the nonlinear terms in the differential equations have 

introduced frequency correction terms that are proportional to the 

amplitude of oscillation to the second power, a2, as given by Al0 

and the part of AOl that results from the coefficients p14, p16, 

4149 ad 916 . Figure 4.3 illustrates the effects of including the 

nonlinear terms for the case of r = 1.5 and E = 0.1 and 0.01 . 

Note that this is a resonance case that would occur even if nonlinear 

effects were omitted (see Eq's. (4.52)). The linear analysis shows 

that unbounded oscillation would occur for values of spin momentum, 

a, identical with those predicted by the nonlinear analysis for 

aF0. The nonlinear analysis, however, shows that the motion is not 

unbounded. With a constant spin momentum the amplitude of oscillation 

increases giving rise to a "stiffening" of the system; as a result 

an upper limit of the amplitude is reached. The maximum amplitude is 

a function of the width of the instability region. Inspection of 

Figure 4.3 shows that the amplitude would grow to a maximum value in 

excess of 0.5 radians for R = 0.837 when 6 = 0.1 . On the other 

hand, the maximum smplitude for the narrower resonance region correspond- 

ing to E = 0.01 is approximately 0.15 radians and occurs when 

a = 0.878 . 

Case B of Eq's. (4.58) occurs when the natural frequency of the 

system falls within the range given by 
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0.25- 1~ 
1% ' 

'Case B 
< ci + 

%O 

(4.61) 

in which 

a01 =+a 2 P16(Bq-;;~) - ql6~l~i 
(4.62) 

Case B 

It can be seen that the frequency correction terms are proportionalto 

a2 I so that the width of the instability region is essentially zero 

for very small amplitudes. This type of resonance region is illustrated 

in Figure 4.4. Note that this is a resonance region that does not 

appear in the linearized case. Inspection of Figure 4.4 shows that the 

instability region has zero width at zero amplitude. Further, if 

a disturbance occurs so that the instability region is entered, a 

further limited increase in smplitude will occur (at constant A) until 

the boundary of the resonance region is encountered. 

When no resonance occurs in the e-order terms ' 40 is found 

to be zero. Resonance regions that occur at other frequencies given 

in Eq's. (4.49) can be found by considering higher order terms in the 

asymptotic expansion, Eq's. (4.53). In general these regions will be 

narrower than the two cases just described, since their width is 

measured in terms of An0 multiplied by en where n is equal to or 

larger than 2 and E is a small parameter. Consequently, in these 

cases, the smplitude of resonance oscillation will be further restricted 
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because of the phenomenon noted above, that is the tendency of the system 

to shift the frequency of resonant oscillation so as to limit the 

amplitude reached by,the system for a given set of parameters. 

We conclude that our principal interest is in the resonances 

given by the linearized system and, further, the most dangerous resonances 

till be the broadest resonance regions given by the lowest order 

approximation in e . Hence, concentrating on the linearized system, 

we may write the linearized equations of motion 

0;’ + fy; + B,e, = C {cTC-48; 4 e,(4-ear)] 4 sT(2G2)] 

+ e2{c2T[-5e; + el(7 - 5/2 &)I + &T(ge,)] + o(c3) 

(4.63) 

e; 4g3ef4p4e2= 31 e{CT[4ei + e,(l3-gr-2'lr) - sr(2el)l 

+ E2{C2TC58i -t e2 l/2 (41-27r-5&)] - s27(5e,)J 4 O(E3) 

and the assumed solution will be as given by Eq's. (4.47) but with 

(3 set equal to zero. 

el = a c(glT + 8) + b ~(4~' + 62) 4 uole +‘uo2c2 + . . . 

e2 = a(hl 4 hole + ho2e2 + . ..) S&T + 61) + b(A, 4 yole + yo2e 2 + . ..) 

2 . s(O~+T + 62) + vole 4 vo2e + . . . 

(4.64) 
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$1 = Cl 4 A& + %2E2 4 l . . 

JI, = c2 + role + I- 02 e2 + . . . 

Substituting the assumed solution into the equations of motion and 

equating the coefficients of the first powerof E one obtains 

a- w 1 -&!I1 + BIAl, + holi&l c(glT + 61, + b[ rol(-~2+Plh2) 

+ YolBl;ld C(+zT + 62) + Uii + BlV& + @25)-j- 

= aif, C(T + ‘$7 4 61, + f12 C(T - ty - 

+ b[fa c(T 4 v2T 4 b2) + f22 c(T - q27 - 

aiAol(-B3-2~l~l) 4 hol( B4 - ii:)1 s( tlT + “1, 

+ Yo1@4 - ;;;)I s( Q27 + h2) + vtl + p3"~1 

= &, s(T + e17 4 61) 4 g12 s( 7 - Q7 - 

+ bkV s(T + q27 4 b2) + g22 sp - tf2T - 

in which 

f ij = $ C'4;;,hi 4 4 - 2& 4 (-l)52ri3 

63. - 1J 
= 3 C(4)jJ.G i + (-l)jAi(2er+9r-13) - 21 

6$ 

fj2) I 
(4.65) 

+ b[ rol(-B3-2h$2) 

4 B4"Ol 

$)I 

b211 

(4.W 
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Resonance may be seen to occur in Eq's. (4.65) when one of the 

frequencies on the right is equal to $1 or $2 . Specifically this 

occurs when 

0.d’) 

Eliminating cases without physical meaning and repeated cases, the 

principal resonances are seen to occur for the following principal 

frequencies of oscillation 

Case 1: 3, = ;1 + L+)p + . . . = l/2 

Case 2: 'li2='U2+FOle+ . . . =1/2 
(4.68) 

Case 3: ol+ ~,=~,+~,+aO,E + I& + . . . =l 

Case 4: T’ ’ ql- 0, =uJ1 -w2 +A& - Lo1E + . . . =l 

The first case given by Eq's. (4.68) can be investigated by 

setting 4, = l/2 in Eq's. (4.65). Our interest is principally in 

determining AOl which is done by equating the terms of equal frequency 

in Eq's. (4.65). This yields a solution when bl = nx/2 , (n=O,1,2,...), 

corresponding to the condition of constant amplitude resonant oscillation 

on the boundaries of the resonance region. For this case, ~~~ has been 

evaluated as given below, where the positive sign corresponds to 

6 
1 = O,S1,2Jr,... and the negative sign corresponds to bl = T, IX 3 g,... 

177 



=+ f12($ - ;1") - g12PlUl 
(4.6~) 

Case 1 (Bq 
- Gf,( 4cl + yl, + f31q83 + 'Qq 

Thus an unstable resonance condition will be encountered (within first 

approximation accuracy) when the parameters of the problem are such 

that the natural frequency falls within the range 

1 
-- 2 1% 1 I Ed+ L 2 1% 1 I E (4.70) 

Similarly for Case 2 of Eq's. (4.68) the unstable region is given 

by 

1 r' e<- 1 T' -- 
2 I I A 01 u12<5+ 

I I '01 e (4.71) 

inwhich 

J” 
f22(BL, - ;;I - 

=+ - g22Sl"2 
01 

Case 2 (Bq - L”g)(‘s2 + @lh2) + Bl;;e(B3 + 2h$2) 

(4.72) 

Case 3 allows two distinct resonance oscillations to take place, 

one with frequency near - (-5 and the other near G 2’ The frequencies 

of oscillations on the boundary depend on L& and 1 o1 which are 

found from Eq's. (4.69) to be 
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- 
4J1 

I 

__f22(B4 - q - 

Case 3 
=i%(B -2 

g223Y 

4 - y)(-$ + Ply + !3&B3 + 2qq 

=+- -3% 
I Case 3 

(4.73) 

Jy =2; 
I 

f&4 - g, - g121q2 
01 Case 3 (Bq - o-'3(-G2 + Blh2) + PlG2(B3 + 2Lj,) 

-b” ro; =+- I Case 3 

In each of the ative equations the positive sign corresponds to 

oscillation on one boundary with 6l + 6, = 0, 2r(, . . . whereas the nega- 

tive sign corresponds to oscillation on the other boundary with 61+ 

62 = If, 3fl, . . . 

An unstable resonance condition will be encountered (within first 

approximation accuracy) when the parameters of the problem are such that 

the sum of the natural frequencies falls within the range - 

l- 
I 
a,,+ rol~.s~'Ulf+l+ *0,+ r01le I (4.74) 

where the values of Aol and rol used on each side of the inequality must 

be evaluated on the same boundary of the instability region. 

Case 4 is similar to Case 3 in that two separate oscillations 

again take place. The unstable region is found to be given by 
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1 - A.,, - r,le < ;;1 - & < 1 + Ia,, - I (4.75) 

where A01 and To1 on each side of the inequality must again be 

evaluated on the same instability boundary; their values are given 

by 

Aol + 2 f2&“4 - q - g21 Ppl 
=- 

Case 4 a (R4- $16 2;)1. + Pl”l) + R&FJ3 + 2xlY - > 

=+ - g A*()1 
I Case 4 

(4.76) 

-J- 01 
Case 4 $,(- 2G2 + Plk2) + RlE2(B3 + 2k2G2) 

= t r;, I Case 4 

where tk positive signs again correspond to the boundary for which 

% - 62 = 0, 2r(, . . . and the negative signs to 6l - h2 = YC, 3x, . . . . 

Cases 1 and 2 above furnish means of calculating the size of the 

resonance instability region for any orbit eccentricity. Cases 3 and 4, 

on the other hand, do not establish a unique resonance region, since 

the parameters A,, and rol are functions of the relative amplitudes of 

the two principle oscillations. Specifically, in Cases 3 arki 4, Aol is 

proportionalto b/a and rol is proportional to a/b. It can be shown 
* 

for Case 3 that, when A:l and To1 have the same sign on a given insta- 

bility boundary, the minimum width of the instability region is given 

b/a = [T 
O1 Case 3 ' Ail I 

p/2 
Case 3 

(4.77) 
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The instability region may have zero width when rzland f& 

are of opposite sign. Similarly, in Case 4, when Aol * and r& have 

opposite signs on a given instability boundary the minimum width of 

the instability region occurs when 

b/a = -c& I / AZ1 1 l/2 (4.78) 
Case 3 Case 3 "' 

l-k* 
In this case the region may be of zero width when AEl and I o1 have 

the same sign. 

Of course, the regions described above in the first approxima- 

tion could be established in greater detail, if desired, by further 

expansion of the equations of motion and sequential solution for A,,, 

r 02' Ao3, 03’ etc* r To illustrate this procedure, the second approxi- 

mation has been made for Case 2 ($, = $). To this end we must find yol, 

uol and v o1 from the first approximation. The expression for yol is 

Yo1 = t 
f22(A + 2h2Z2) + g22(“lA2 - 2E2) 

(4.79) 
(a4 - L@31x2 - ‘ii.9 + 61;;2(63 + 2X2i2) 

where the positive sign corresponds to 62 = 0, TC, . . . and the negative 

sign corresponds to h2 = $, $, . . . . Equating the coefficients of e2 

in the asymptotic expansion of Eq's. (4.63), applying harmonic balance, 

and solving for ro2 we obtain 

r 02 = 
f3h4 - g, - f@,;;, 
(P4 - ‘U2)2h31h2 - ‘G2> + s1(u,(f13 + 2;c2i2) 

in which 

(4.80) 

‘3 = 01 - II2 pl rolyol + 13~~6 1 - 2G2> + A2# - Jr) + ho1~g-~~2~1-~01~ 
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(4.81) 

In the above definitions of f3 and f4 the positive sign corresponds 

to 62 = 0, lr, 2x, . . . and the negative sign corresponds to 6 2 = $ 

;, . . . . The coefficients A2l and B21 are identical with those derived 

below for the e order terms. 

When the parameters of the problem are such that no resonance 

regions in the e order terms, as given in the first approximation by 

Eq's. (4.70), (4.71), (4.74), and (4.75), are encountered, then the 

equations of motion, Eq's. (4.65) yield the solution 

Aol = I& = h 01 = yol = 0 

uol = a[AUc(T + Jr17 + 61) + A12c(7 - $1~ - 61)1 + 

(4.82) 

vol = aLBlls(T + jr17 + 61) + B12S(7 - q17 - 6,)] + 

b[B21s(T + Q2T + 62) + B22s(~ - $27 - &,)I 

in which 

A = ij 

B = ij 

fi.[84 - [l - (-l)j$i]2] - gi.Rl[l - (-l)j$.] 

@2 - Cl - WJtii1231P4 - Cl - Gl)j$i12] + ",P3C1 - Gl)jJii12 

fij83[1 - (-l)j~i] + gi’CO2 - [l - (-‘)j,i127 
(4.83) 

CP, - C1 - (-‘)j~i121cR4 - Cl - (4J(ri12] + B163c1 - (4jJri12 
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Equating the e2 terms in the asymptotic expansion of the equations of 

motion, using Eq's. (4.82)’ gives 

a+)&~~~ - 25) + ho2@Q c(qlT + 61) + b[ ro2blk2 - 2$) + 

yo2glfi2] C((f27 + 62) + U& + plv;)2 + P2"02 = aChlc(*l~ ' 

61) + h2C(2T + Jr17 + $1 + h3c(2T - qlT - 61)l + b[h4c($2T + 

8) + h5C!(2T + Q2T + 62) + h6c(2T - '$27 - 62)I 

(4.84) 

aCa,,(-R3 - 2klGJl) + hO2(P4 - ;:)I S(g17 + 61) + bC ro2(-F’3 - 

2X& + yo2(R4 - $)] &r2T + h2) + vi2 + R3”& + p4v02 

= a[+$lT + 4> + k2S(2T + lrlT + a,)3 + k3& - $17 - 

9) 1 + b[k4"($g7 + tj2) + k5S(& + JT27 + a;r) + k6S(& - 

where the values of the constants h and k are 

hl = (-1 - 2\)B11 + (-1 + 2;;1)B12 + (2 - ar)(AU + A12) 

h2 = $ (-5hlk + 7 - 5 fir - 55) + (-3 - 2&)Bll + @-Ar)A11 

h3 
= 3 (-5x,4 + 7 - g Jr + 5x,) + (-3 + 2$)B12 + (2-a'>& 

h4 = (-1 - 2;2)B21 + (-1 + 2;2)B22 + (2 - d(A21 + A22) 
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h5 = $ (-5h2i2 + 7 - z jr - 5n,) + (-3 -2;1,)B,, + (2 - ar)A,, 

h6 = $ (-5x,;;, + 7 - 5 Rr + 5;L2) + (-3 + 2$>B22 + (2 - Rr)AE2 

kl = (-1 - 2zl)AU + (1 - 2&)AU + $ (13 - 9r - 2Qr)(B11 - B12) 

k2 = 3 C-54 + $ X,(41 - 27r - 5D) - 53 + (-3 - 2;i_)G + 

One can observe, based 

regions exist for 

$1 = 2 + $1 ' 

$2 =2gp 

(4.85) 
$ (13 - 9r - 2D)Bll 

k3 = $ [5(u, - + X1( 41 - 27r - 5ar) - 51 + (-3 + 2&)A12 + 

$ (13 - 9r - 2ar)B12 

k4 = (-1 - 2;~2)A~~ + (1 - 2&)A22 + $ (13 - 9r - 29,r)(B21 - B22) 

k5 = $ [-5G2 + $ h2(41 - 27r - 5ar) - 53 + (-3 - 2w2)A21 + 

$ (13 - 9r - 2D-)B21 

k6 = 5 [5$ - $ h2(41 - 27l- - 5jr) - 53 + (-3 + 2;2)A22 + 

$ (13 - 9r - 2m)B,, 
LL 

on inspection of Eq's. (4.84)) that resonance 

Jr1 = 2 + Jr2 Y 

(4.86) 
a, =2+$2 

Eliminating cases without physical meaning and repeated cases, shows 

that the following four additional resonance regions appear 

Case 5: 3rl = $ + Ao2e2 + . . . =l 

Case 6: $2 = Z2 + ro2c2 + . . . = 1 
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(4.87) Case 7: $, + g2 = ;1 + ;;2 + Ao2e2 + ro2e2 + . . . = 2 

case 8: ql - q2 = ;;1. - ;;2 + Ao2s2 + ro2e2 + . . . = 2 

Solving for the coefficientAo2 corresponding to Case 5, one obtains 

A 02 (-hl 2 h3)b4 - % 02) - (kl 
= 

+ k3) $il 

Case 5 (Rsl - 2;jl)(R4 - g) + 6 - (R + 265) 1% 3 

= "1 + “2 (4.88) 

in which the positive signs yield the boundary of the instability re- 

gion for which hl = 0, R, . . . and the negative sign gives the boundary 

corresponding to hl = g, +, . . . . Instability can be seen to occur 

within the accuracy of the second approximation, when the parameters of 

the problem are such that 

l-(ml+lm21)e2<(u1<1-(ml-lmJ)e2 

Similarly for Case 6 

(4.89) 

I2 
I 

(h4 + h6) (64 - t$, - (k4 + k6) Rlz2 

Case 6 = ("pe - 2$)(6, - g, + Rli2 (R3 + 2E2h2) 

=m 3 + “4 

and instability occurs when 

(4.90) 

1 - tm3 I 41 + m ) e2 c ;;1 < 1 - (m 
3 

- m4 I I’ e2 (4.91) 

Case 7 allows two distinct resonance oscillations to take place, 

one with frequency near - 9. and the other near - 9' The frequencies of 

oscillation on the boundary depend on Ao2 and ro2 which can be found 
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from Eq's. (4.84) to be 

Ao2 

I 

thl+ p h6)(B4 - $1 - <kl + p ks, pl;)l 

Case 7 = (elk1 - 2<)(R4 - $1 + R1;'1('B3 + 2Glkl) 

=m 5+% 
(4.92) 

I- 02 

I 

= <h4 t$h3)(B4 - t$, - (k4 LEk3) RlG2 

Case 7 (Rlk2 - 2G2)(A4 - r+ 3 + tp2b3 + 2z2x2) 

In each of the above equations the positive signs correspond to oscil- 

lation on one boundary for which $ + 62 = 0, 2n, . . . while the nega- 

tive signs correspond to oscillation on the other boundary of the 

instability region for which 6l + h2 = YC, 3x, . . . . An unstable re- 

sonance will be encountered, within second approximation accuracy, 

when the parameters of the problem are such that the sum of the natural 

frequencies falls between the values 2 - Ao2 
I - ro2 I 

evaluated 
Case 7 Case 7 

on one boundary of the instability region and 2 - Ao2 
I Case 7 - L2 I Case 7 

evaluated on the other boundary. 

It can again be noted that the width of the instability region is 

a function of the ratio of amplitudes, b/a. when m6 and m8 are Of the 

same sign, it can be shown that the minimum width of the instability re- 

gion occurs when b/a = (%/m6) l/2 so that the motion will always be un- 

stable when 
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Although the above relation gives the minimum width of the instability 

region when "6 and "8 have the same sign, no similar relation is pos- 

sible when m6 and ms are of opposite sign, since the instability region 

may be of zero width in that case. 

Similarly in Case 8, an unstable resonance will occur when 6 - 

4 falls between the value 2 - Ao2 
I - L I 

evaluated on 
case 8 Case 8 

one boundary of the resonance region and 2 - Ao2 
I Case 8 - 732 I Case 8 

on the other boundary, where A 02 and ro2 are obtained from the following 

expressions 

Ao2 
I 

(hl + $ hs) (64 - Gt) - (kl + k k5) al< 

Case 8= (R~x~ - 2$)(6, - q, + A iJ (P + 2Glhl) 11 3 
=m +I! 

9-amlO 
(4.94) 

r 02 = (h4 2% h2h4 - ii;, - (k4 +tk2) S,u1, 

Case 8 (Rlk2 - 2Z2)(Ft4 - ZE) + P G (6 + 2G2k2) '12 3 

=mlo+%ml2 

In the above, the positive signs correspond to the boundary on which 

% - 62 
= 0, 21I,... and the negative signs correspond to the boundary 

on which 6l - 62 = II, 3n, . . . . The instability region may be of zero 

width when ml0 and ml2 are of the same sign. The minimum width of the 
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instability region, when m 10 and ml2 are of opposite sign, is given 

by 

2 - Em9 - ml1 + 2 &mloy2 I c2 < 5 - ii2 < 2 - [mg - ml1 - 24F&lC2 

(4.95) 

4.8 Results and Comparison with Other Re.sjar$& 

The stability of attitude motion of a rigid, symmetric, spinning 

satellite in an elliptic orbit has been investigated, The problem has 

been formulated by regarding the ellipse eccentricity, e, as a para- 

meter. The orbital coordinates comprising the radial distance R and 

the angular position 0 are treated as known functions of time. A set 

of nonlinear equations of motion is derived containing periodic coeffi- 

cients entering into the equations by virtue of R and @ . A particular 

equilibrium position in which the spin axis is normal to the orbit plane 

has been identified and the stability of motion about this equilibrium 

position studied. The equations of motion have been studied in both the 

linear and nonlinear form using the methods of Section II. Instability 

regions have been located in the 1 vs. r plane where R is proportional 

to the spin angular momentum pcD and r is the ratio of the moments of 

inertia about the spin axis and a transverse axis. The location and 

width of the instability regions have been determined for various values 

of Q in closed form. The important nonlinear phenomena are presented 

in Section 4.7. The appearance of new instability regions, not found in 

the linearized system, and the occurrence of nonlinear "stiffening" of 
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the system tending to limit the amplitude of resonance oscillation are 

noted. Typical resonance regions corresponding to the nonlinear equa- 

tions are shown in Figures& 3 and 4.4 where these effects can be seen. 

The latter effect has been demonstrated both analytically and experi- 

mentally by Bolotin (see Reference 22, page 88). Thus consideration of 

the nonlinear effect shows mathematicslly bounded motion. However, the 

amplitude of motion C~XI be rather substantial and the stability of mo- 

tion must be defined in terms of the system performance requirements - 

bounded motion may be classified as unstable if the amplitude of oscil- 

lation is too large. 

The orbit eccentricity E has been treated throughout as a small 

parameter. A value of e that may be considered as small from a mathe- 

matical standpoint is not necessarily small from a physical standpoint 

as it can be shown to cover the vast majority of earth orbiting dynamics 

problems. As an example an ellipse of apogee height 1000 miles and 

perigee height 100 miles has an orbit eccentricity, e, slightly less 

than 0.1. This ratio of apogee to perigee heights, however, is regarded 

as high in most space applications. 

No previous stability analysis of the complete nonlinear system 

of equations is known to have been performed. The analysis of the 

linearized system can be directly compared to the work of Kane and Barba 

[13] who also studied the stability of motion of a rigid, symmetric, 

spinning satellite in an elliptic orbit. Their analysis, based upon a 

method by Cesari [20], utilizes Floquet's theory together with numerical 
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integration of the linearized equations of motion to check the stability 

of motion at discrete points in the parameter space. The investigation 

of Reference [13] included checks of the stability for a number of com- 

binations of parameters with an orbit eccentricity of 0.1, and can be 

canpared with the results of the present more general analysis. Figure 

4.5 shows the stability data of Reference [13], converted to the dimen- 

sionless groupings of the present research. Comparison with the sta- 

bility boundaries dictated by th? requirement for a positive definite 

Hamiltonian, Figure 4.1, shows that the analysis of Reference [3-31 pre- 

dicts infinitesimally stable solutions for some cases of negative spin 

momentum (i.e. spin in the direction opposite to the orbit angular velo- 

city vector). This region of infinitesimal stability is not predicted 

by the Liapounov type of stability analysis, when the Hamiltonian is 

used as the testing function, as has been reported previously [g], 

DOI* This stability region is known to be of little engineering sig- 

nificance since damping has the effect of causing divergent oscilla- 

tions in this region [9]. 

Figure 4.6 shows the stability data of Reference [13] in the re- 

gion of parameter space of principal interest in this investigation - 

specifically in the region where nonresonance oscillations are predicted 

to be stable for zero orbit eccentricity. Reference [13] shows that 

five of the points for which stability was predicted for zero eccentri- 

city became unstable for an orbit eccentricity of 0.1. Three of these 
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Legend: 

XUnstable for E = 0 and c = 0.1 
@Infinitesimally Stable for e = 0 and Unstable for E = 0.1 
OInfinitesimally Stable for c = 0 and c = 0.1 

x x % 0 0000 

b x x x 0000 

x x x x 

Moment of Inertia Ratio, r = C/A 

FIGURE 4-5 

STABIIZFY DATA OF REFERENCE L1.31 
FOR ORBIT ECCENTRICITY OF 0.1 
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Iegend 

OInfinitesimally Stable, per Reference [131,for F: = 0 and 0.1. 
@Infinitesimally Stable for E = 

per Reference [l..jl. 
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FIGURE 4.6 

COMPARISON OF THE REmTS OF THE PRESENT RESEARCH 
WITH THE STABILITY DATA OF REFERENCX iI3 1 

FOR AN ORBIT ECCENTRICITY OF 0.1. 
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unstable points are predicted in the present research because they do 

not satisfy the requirement that the Ramiltonian be positive definite 

for an orbit eccentricity of 0.1. To show amplete agreement with Re- 

ference [13] the other two unstable points must fall within the resonance 

regions of the linearized systan, whereas the stable points must lie 

outside of the resonance regions. Review of the approximate locations 

of thz resonance regions for an extremely small orbit eccentricity, as 

given by Figure 4.2, indicates that a number of the points for which 

stability was predicted in Reference [13] for e = 0.1 could be in re- 

sonance regions. Notable the points at r = 1 could show instabilities. 

However these might not be detected by the numerical integration tech- 

nique of Reference L-133, since the rigid body in that case equivalent 

to a sphere and would not be subjected to disturbing torques. While an 

eccentricity of 0.1 cannot be considered vanishingly small, the com- 

parison still appears Valid because the general nature of Figure 4.2 

is not expected to change substantially; the resonance regions shift 

locations slightly and increase their width with increasing 6. Some 

of the most significant instability regions have been defined for an 

orbit eccentricity of 0.1, as shown in Figure 4.7. 

Concentrating on the two unstable points shown in Reference Cl33 

at Q = 1.0 and r = 2.0 and 1.4, we see that the first of these may be 

subjected to any one of several resonance conditions, the most impor- 

tant being a resonance oscillation for which ;)2 zl (see Figure 4.2). 

The existence of instability at the first of these two points was not 

confirmed in the present analysis. As the present analysis considered 

terms through the second power in c, it must be concluded that the 

instability found by Kane and Rarba arises from higher order terms. 
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On the other hand, instability at R = 1.0 and r = 1.4 was confirmed 

and it can be seen from Figure 4.7 that it belongs to the resonance 

region t, + 5 r 2. 12 

1.94 
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SELEKX'ED INSTABILITY REGIONS 
FOR ORBIT ECCENTRICITY c = 0.1 
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APPENDIXA 

M!FENDF,DLIllPOUNOVSTADILITY GRIIIIERIAFOR 

NONAU'IONOB%XJS %%!EJM 

Theorem 

Given a system described by the differential equations 

jt 
S 

= x&,x2, l l *,x2& , (s=1,2,...,2n) (A. 1) 

for which an equilibrium position, E, exists at x1 = x2 = . . . = X~ = 0 , 

the disturbed motion about this equilibrium position will be stable if a 

continuous function V can be found such that 

a0 v(xl ,0*.,X art) is positive definite in the neighborhood of E 

and zero at E , and 

b. t dV 
s 

t0 
z dt 5 Mu + xp" -k . . . + x:)~) for motion subsequent 

to t = to , in which M is a finite positive constant and 

xp , x(O) I...) xg) 2 are initial, small displacements at 

time t=tO. 

Definition 

X max = E will. be defined to mean a surface of cubic shape, with 

geometric center at the origin, and with sides of length 2~ . 



Proof 

Let us assume that V is a continuous, positive definite function 

in the space and time domain given by 

X 
S sh 9 t 2 to (A.21 

Contours of constant V in the xl,x2,...,xa space at any given 

instant are closed surfaces about the equilibrium position. Also, since 

V is a continuous function, the contours corresponding to different 

values of V do not intersect one another. 

Let us choose an arbitrarily small positive number el with 

y= h (A.31 

We will designate as Vl the smallest value of V that occurs at any 

time t;itO on the surface xmax = e1 . 

The closed contour V = Vl will change shape and size in the 

5,x2. l l l >x,& space since it is in general a function of time. However, 

it wiU remain a closed contour enclosing the origin since V is 

positive definite in this region for all time t 2 to . We will denote 

by xmax= c2 the largest cubic surface centered about the origin that 

will be entirely enclosed in ell contours V = V 1 , for t 2 to . It 

can also be noted that Vl is the largest value that V can take on 

this cubic surface. This is shown graphically for two dimensions in 

Figure A-l. 
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Note: 
Crosshatched Region is the 
Area Swept by the Curve 
V=V 1 for t > to 
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For Various Times 
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x1 

FIGURE A.1 

TWO DIMFNSIONALEXAMPiZ OFTRETIME DEPENDENCE 
OF V = Vl FOR A NONAUTONOMOUS SYSTEM 
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Let us consider the integral 

t s av dt 0 dt 
in which the integration is performed along the motion trajectory 

subsequent to time t = to . The motion is assumed to be initiated by 

means of a smaJ.1 disturbsnce frcnn the equilibrken position 

xp, xp',...,xg) occuring at t5me t = t 0' We see that 

t s 
t0 

$ dt = V(t) - V(t,) 

or t 
v(t) = V(t,) + j 

t0 
2 dt (A-4) 

!The motion will certainly be stable if V(t) at no time exceeds Vl , 

since sll motion will then take place within the arbitrarily small 

region x 5 e 
S 1' Therefore the stability requirement may be written 

t 

t0 
2 dt 5 Vl 

We desire to show that if 

t s z dt s M(xl w2 

t0 
+ xp2 +. . .+ xg2) 

(A.51 

(A-6) 

I-- 
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then the inequality given in Eq. (A.5) will be satisfied and the motion 

will be stable. To do this we must investigate the form of V in the 

neighborhood of E . Since V is continuous. and is positive definite 

in the neighborhood of E and has zero value and zero first derivatives 

at E , the function V must behave Like a quadratic function (or higher 

even power polynomial) of the coordinates xs in a sufficiently amall 

neighborhood of the origin. For sufficiently small e1 this will 

certainly be the case throughout the region xs -L e2 . In that case 

a~value, c o, can be selected so that the value of V within the region 

xs < e2 will be no greater than 

V 2 
max 5 covl(xf + x2 

This can be shown by means 

At the time t = to 

+ . ..+ x 2 

of geometric arguments. 

(A-7) 

(0) v(t,) 5 vmax (“1 (0) >“‘>Xn ) 5 covl (xp)2 + xg” +.. .+xg)*) 

(A.8) 

Consequently, adding Eqs. (As6) and (A.8) we obtain 

v(t,) + St 
t0 

g dt 5 (M + c~V~)(X~)~ + xp)* +...+ ~g)~) 

(A-9) 
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Hence if 

@I + covJ (i!yJ2 +.. .+ xi;)' ) 5 v1 (A.lO) 

then the stability requirement, Eq. (A.5), will certainly be satisfied. 

Furthermore the inequality (A.lO) can be assured by suitable small choice 

of the initial disturbance I..., xg. 
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AITENDIXB 

STABI~JITY ANALYSIS OF ME MA'THIEU EQUATION 

BY THE MEPIODS OF SECTION II 

The methods developed in Section II are developed for application 

to multi-degree-of-freedom systems but can be applied to the Mathieu 

equation which has a single degree of freedom and includes a periodic 

coefficient. The Mathieu equation may be written 

j; + a(l-2q cos aot)y = 0 (3.1) 

and could be derived from a mechanic&L system with kinetic energy, 

potential energy, Lagrangian function, and Hamiltonian function of 

FE=+ a(l-2q cos tiot)y2 (B-3) 

II 1 .2 =- 2y - $ a(l-2q cos aot)y2 0.4) 

H +*++ a(l-2q cos aot)y2 0.5) 
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by means of Lagrange's equation of motion 

& ($$) - $ = 0 03.6) 

We note that an equilibrium position exists at the point y = f = 0 , 

since this point satisfies the equation of motion. 

Liapounov TVoe of Analvsis 

Application of the first part of the stability theorem states 

that the motion can be stable if 

a% 
2 
a~ E 

= a(l-2q cos 2.0,t) > 0 03.7) 

for all-time. Let us assume q to be a positive constant (which can 

be assured by a 

if 

a>O, 

2q < 1 

shift in the time reference) and Eq. (B.7) is satisfied 

03.8) 

The second part of the stability theorem states that the following 

inequality must be satisfied 

t t s f$f dt = s jf dt s M(y (o)* + @P) 

t0 t0 
(B-9) 
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for the equilibrium to be stable. But Eq. (B.1) is linear and Floquet's 

theorem tells us that the solution can be written in the form 

co 

Y= 11 

2 (P.+ivj)t 
e J 

n=O j=l 

Differentiation with respect 

we know that y = y (0) and 

in Eq. (B.lO) so that 

[ anJ cos(2tuot + 

to t gives us 5 . Also, at time t = to 

$=f (0) . We can redefine the coefficients 

'ln)l (B.lO) 

Y'Y bnjcos(2mot + bin) 
n=O j=l 

(B.ll) 

.(O) F f e(pj+ivj!t 
i=Y CniCOS(2mot + $J , 

n=O j=l 

and it will be assumed without proof that the Fourier coefficients 

bn and cn are bounded. Substitution of Eq.'s (B.ll) and (B.5) 

into Eq. (B.9) can be expressed in the form 

y(o)2i f p f e(Pj+ik)tei(vj+vk)tdnjcos(~ot + 63n)dt 

t1=0 j=l l& t0 
(B.12) 

+ $(o)2 i F f e(pj+pk)t ,$ii+vk)t enjcos(awgt + 64n)dt 
n=O j=l t0 
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where M is an arbitrary positive constant. This relation can be 

satisfied as long as the value of each of the integrctls is bounded. 

We must investigate four cases 

a. Pj + bk s 0 , 
'3 

+ Vk f 2noo 

b. pj+%>o , '3 + 'k +2"0 

(B-13) 
C. Pj + Pk 22 0 , +v 'j k = 2mo 

d. lLj+Pk>o , +v 'j k = au0 

The first two cases correspond to nonresonant motion, and the value of 

the integral varies periodically with time. Case a. represents stable 

motion for which the inequality, Eq. (B.12), is satisfied whereas case b. 

is clearly impossible since, for large t , the Hsmiltonian would 

oscillate with increasing amplitude. Cases c. and d. correspond to 

resonant motion. Case c. represents bounded motion and case d. represents 

divergent motion in which the Hamiltonian increases without bound 

with time. 

We can conclude that unstable motion does not occur in the 

nonresonant case for which the JSamiltonian is positive definite. We 
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can use other techniques to define the resonance regions in detail, 

but for sm&ll q it is possible to find the approximate locations of sJ1 

of the regions of resonance 'instability using the above information. 

We note that in the limit as q -+ 0 the solution must approach 

Y = al edt + a2 ewGt (B.14) 

Comparison with Eq. (B.lO) shows us that as q -t 0 all the Fourier 

coefficients must approach zero except those corresponding to n = 0 , 

the CL must approach zero, and 

v1 -4 

v2 * - A 
0.15 1 

The resonance regions according to the last of Eq.*s (B.13) must occur 

when the parametric resonance frequence is given by the approxknation 

a&rawo, (n=0,+1,+2,.**) 

or 

a g n2c02 0 ' (n=0,+1,52,..*) 

(~.i6) 

03.17) 

This is valid only in the case of small q and is in agreement with 

the existing solutions of the Mathieu equation. 
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Method Based on Infinite Beterminant[22] 

At the boundary of each region of instability we will find that 

periodic motion exists and that this motion can be expressed in the form 

02 

y=ao+ I (a,cos I"Ot + bnsin mot) 
n=l 

(~.18) 

Substituting into Eq. (B.l) and equating coefficients of cos "Ot 

we obtain 

%( 
2 

"0 - a -t qa) + a 
3 
qa = 0 

a2L(2t00)2-al + a4qa = 0 

anw24a + a,C(~o)2-al + ati29a = 0 ,(n = 3,4,...) 

and equating coefficients of sin rwOt we get 

b& - a - qa) + b3qa = 0 

b2[(ao)2 - a] + b4qa = 0 

b n-2qa + bnC(mo12 - d + bn+2qa = 0 ,(n = 3,4,...) 

(B-19) 

(B.=) 

Ihe determinant of the coefficients must be zero in order for a solution 

to exist. Actuslly four separate determinantscan be written for the 

coefficients of even and odd an and bn . The determinants for 

odd an and bn have been found to describe the first region whkh has 

been called the region of "principal" instability. 
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t 

cu2-a+qa 0 

qa 

0 

. 

. 

. 

2 cu -a-qa 0 

qa 

0 

qa 

(Wo12-a 

w 

. 

. 

. 

qa 

(3o)2-a 

qa 

. 

D 

. 

Dividing through by -n2a 

0 

qa 

(Wo12-a 

. 

. 

0 

0 

qa 

(Wo12-a 

. 

. 

. 

0 

0 

qa 

. 

. 

. 

0 

0 

qa 

. 

. 

. 

. . . . 

. . . . 

. . . . 

. 0 . . 

. 0 . 0 

. . . . 

. . . . 

. . . . 

. . . . 

. . . . 

0 0 . . 

. . . . 

= 0 (BA) 

= 0 (B.22) 

we obtain a form that is convergent c 23. 

The infinite determinant in this case can be evaluated in its entirety 

and this is one method of determin-ing the regions of instability of 

the Mathieu equation. However, we are interested in developing techniques 

for use in problems where this will not be possible. Evaluation of the 

determinants, Eq. (B.21) and Eq. (B.22), by taking successively larger 

principle minors starting from the upper left will result, for small 

q , in successively better estimates of the regions of instability. 

The first estimate gives us 
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2 coo - a = + qa (B. 23) 

which gives 

aZ?'cu 0' (12 s> 

or, for subsequent comparison, can be written in the form 

fi =wo(l+ l/2 q) 

The second approximation comes frcm 

(2 - a+ qa) i(30,j2 - a] - q2a2 = 0 

(B.24) 

(B.25) 

and can be written as an improved approximation for the first region 

of instability. 

& Z(O~(~ 2 i/2 q + 5/16 q2) (B-27) 

The second approximation aJso yields a first approximation of the 

third region of instability. In a similar fashion the boundaries of the 

odd regions of instability may be defined with increased accuracy as 

higher order minors of the infinite determinants are evaluated, and an 

additional region can be defined for each additional order is taken. 

The even numbered regions of stability 

(near JZ = tie, ~cD~, 6wo ,... 1 

can be obtained from the determinants of the coefficients of even an 

and bn in Eq*s. (B.19) and (B.20). 



Method Based on As.ymntotic --a Exu ansion in Terms of a Small Parameter ---up 

We can also define the regions of instability by means of an 

asymptotic expansion of the equations of motion in terms of a small 

psrsmeter. In this case no new information will be obtained and its 

application to the Mathieu equation is for the puqose of illustration 

of the technique. 

Following the procedure outlined in Section II we will assume a 

resonance condition to exist with constant amplitude and phase angle 

Y= alcos(UOt + 6) + q ul(t) + q2u2(t) + . . . (~.28) 

in which the terms u 19 up l ** include nonresonance terms. When 

q is a small parameter the first region of instability (for which 

U.J~ Z& ) will be defined in terms of the expansion 

Substituting into the differentisl equation, Eq. (B.l), one obtains 

for terms up to the second power of q 

d2ul 
- alu&Os(w,t + 6) + q - +9 

2 d2u2 
dt2 

- + ala cos(urgt + 6) 
dt2 

03.30) 

+ a 9% + a q2u2 - 2aq cos 2.00tCalcos(030t + 6) + q u,l = 0 
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From Eq. (B.29) we can write 

03.31) 

which, when substituted into Eq. (B. 31), gives 

d% 2 d2u2 
q -+q - 

dt2 dt2 
+ 2al%uoq cos(Uot + 6)+ q2(.2A~o+A$alcos(~ot + 6) 

+ uzq u1 + sBfJoq2u 1 + cI$q2u2 - a(,$ + =-pos2) Ccos(3Jot + 6) 

+ cos(wgt - S)] - 2L$q2cos 2oot u1 = 0 (B.32) 

Equating the coefficients of q one obtains 

d2ul 
- + 2alAyOcos(~ot + 6) + CIJ$I~ 
dt2 

- al(-+=(~ot + 6) + cos(mot - S)] = 0 03.33) 

Equating the coefficients of the terms in cos mot so that the function 

ul does not include the resonance oscillation we see that this constant 

amplitude resonance oscillation can only take place when 6 = $$ such 

that 
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42 =- when 6 =Oorfi 

(B. 34) 

when 6 Gor$ =- 

Also, ul must satisf'y the relation 

2 
dUl -2 - + ooul 
dt2 

= apEcos(puOt + 6) 

from which 

"1 
l-5 = - 8 COsbot + 6) 

(Be35) 

(B. 36) 

Equating the coefficients of q2 in Eq. (B.33) and including the 

appropriate substitutions for ul , one obtains 

% + ( 2Apo+~)alcos(wgt+6) 
dt2 

- t elwoal cos(3wgt+6) 

2 
+ '"ou2 - 2~&'oCOS(~ot+6) - 2yAyocos(~ot-6) 

+ 8' af$ cosbot-6) + $J a& cos(5uot+6) = 0 (B.37) 

Equating the coefficients of cos mot so that u2 will not include 

the resonance oscillation 
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y(21-po + Af) cos(uot + 6) - 2ap.pocos(cuot - 6) 

+ $ apg cos(mot - 6) = o 03.38) 

This can be solved for a, by appropriate substitution of 4 Tram 

the first approximation and the corresponding value of 6 such that 

when 

4 2j 6=Oorsr , =a 
*2 =% "0 

and when 

4=->, 6=$pr-$, *2 = 5 "0 

(B. 39) 

Substituting the values derived above for 4 and A, into 

Eq. (B.30) the results of the previous section are varified such that the 

boundaries of the first resonance region are given by 

&= “.‘o(l 4 ‘2 q +$ q2 + . ..) (B-40) 

The above approximation could be carried further by initial assumption 

of more terms in the asymptotic expansion and repeating the above process. 
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